84TH ANNUAL MEETING OF THE METEORITICAL SOCIETY

August 15–21, 2021 Chicago, Illinois

Program

Monday, August 16, 2021		
8:30 a.m.	Waldorf	Welcome and Introduction
9:00 a.m.	Waldorf	Moon
9:00 a.m.	Williford AB	Chondrules
12:00 p.m.	Waldorf	Townhall: OSIRIS-REx Sample Analysis
1:30 p.m.	Williford AB	Achondrites I
1:30 p.m.	Waldorf	CAIs
6:00 p.m.	Waldorf	Barringer Lecture

Tuesday, August 17, 2021

8:30 a.m.	Williford AB	Missions
8:30 a.m.	Waldorf	Impacts
12:00 p.m.	Waldorf	Townhall: Status of the Mars Sample Return Campaign
1:30 p.m.	Williford AB	Mars
1:30 p.m.	Waldorf	Presolar Grains
5:30 p.m.	Williford C	Poster Session
		Achondrites Carbonaceous Chondrites Curation and Education Enstatite and Ordinary Chondrites Early Solar System: Disk Conditions and Processes Space Weathering Impacts Mars and Moon Missions Micrometeorites Chondrules and CAIs Experiments Small Bodies

Wednesday, August 18, 2021

8:30 a.m. Waldorf

Meteoritical Society Award Ceremony 2020 and 2021

Thursday, August 19, 2021

8:30 a.m.	Williford AB	Carbonaceous Chondrites
8:30 a.m.	Waldorf	Achondrites II
12:00 p.m.	Waldorf	Meteoritical Society Business Meeting
1:30 p.m.	Williford AB	Disk Conditions and Processes
1:30 p.m.	Waldorf	Fireballs and Sources

Friday, August 20, 2021

8:30 a.m.	Williford ABC	Chondrites
8:30 a.m.	Waldorf	Organics and Ices
1:30 p.m.	Williford ABC	Parent Body Processes
1:30 p.m.	Waldorf	Potpourri

Saturday, August 21, 2021

8:30 a.m. Field Museum of Natural History, Founders Room Workshop on Meteorite Ownership and Legal Issues

E-Posters

Virtual Poster Session A Virtual Poster Session B

Monday, August 16, 2021 MOON 8:30 a.m. Waldorf

Chairs: Ryan Zeigler and Amanda Stadermann

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Heck, P. R. *	Welcome Remarks
a.m.		
8:45	Ciesla, F. J. *	Welcome Remarks
a.m.		
9:00	Fegley B. Jr. * Lodders K.	Condensation Chemistry of Dry Bulk Silicate
a.m.		Earth Material [#6131]
		We give condensation calculations for dry bulk silicate Earth
		material at 1e-6 to 1e+2 bars and T up to 6000 K with
		thermal ionization and non-ideal molten oxide solution. Our
		work constrains lunar formation and molten silicate
0.45		evaporation with fO_2 .
9:15	Daupnas N. * Nie N. X.	Are K and Kb Uniformly Depleted in Lunar Rocks? [#6226]
a.m.	Bianchard M. Zhang Z. J. Zeng H.	magmatic origin. We present two approaches to soo
	Capup R. Hopp T.	through these magmatic processes and estimate the
		composition of the Moon
9.30	Stadermann A. C. * Barnes I. I.	Apollo Sample 64455: Petrologic and Geochemical
a.m.	Erickson T. M. Zega T. J.	Characterization of a Glass-Coated Impact
		Melt Rock [#6261]
		Metamorphism / On contact with impact melt / In
		Apollo rock.
9:45	Greer J. * Zhang B. Isheim D.	Atom Probe Tomography of 4.45 Ga Lunar Zircon from the
a.m.	Seidman D. N. Bouvier A.	Apollo 17 Civet Cat Norite Clast [#6134]
	Heck P. R.	APT analysis of zircon from the Civet Cat norite clast of
		Apollo 17 impact melt breccia 72255 reveals Pb distribution
		at the nanoscale, important for interpreting NanoSIMS U-Pb
		and Pb-Pb ages.
10:00	Treiman A. H. * Semprich J. J.	Lunar Feldspathic Breccia Northwest Africa (NWA) 11421:
a.m.		Clasts in the Corners [#6065]
		Y ray mans
10.15	Zeigler P. A. * Gross L. Eckley S	A-ray maps.
10.15 a m	Vander Kaaden K F	from the Dominion Range [#6141]
u		Initial results of electron microprobe and X-ray computed
		tomography (XCT) studies of the seven new DOM lunar
		meteorites and a look at the details of their petrography
		and mineral chemistry, as well as investigate possible
		pairing relation-hips.
PRE-RECO	RDED PRESENTATION	
10:30	Morino P. * Schönbächler M.	A Combined Study of Cr Isotope and Noble Gas Composition
a.m.	Maden C. Busemann H.	of 18 Apollo Samples [#6150]
		This study aims to combine high precision Cr isotope and
		noble gas measurements of Apollo samples to first
		determine the Cr isotope composition of the Moon and
		then tighten the constraints on the origin and composition
		ot ineia.

10:40	Q&A
a.m.	

Monday, August 16, 2021 CHONDRULES 9:00 a.m. Williford AB

Chairs: Alexander Ruzicka and Marina Gemma

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
9:00	Ruzicka A. M. * Hugo R. C.	Probing the Thermal and Deformation Histories of
a.m.		Chondrules in a Cluster Chondrite Lithology of Northwest
		Africa 5205 with Electron Backscatter Diffraction
		(EBSD) Techniques [#6109]
		Most chondrules in a cluster lithology of NWA 5205 (LL3.2)
		accreted while warm, but some chondrules were cool, and
		some were deformed and reheated prior to agglomeration.
9:15	Zhang M. * Fukuda K. Siron G.	Primitive Chondrule Minerals (PCM) Line-A Mix of
a.m.	Kita N. T. Ushikubo T.	Two Trends? [#6036]
		We reanalyzed Acfer 094 chondrite chondrules and prove
		that the PCM line could be a mix of two trends, the one
		below is represented by typical CC chondrules and the one
		above is represented by those chondrules mixed with OC
		chondrule-like materials.
9:30	Shimizu K. * Alexander C. M. O'D.	Highly Volatile Element (H, C, F, Cl, S) Abundances and H
a.m.	Hauri E. H. Sarafian A. R.	Isotopic Composition in Chondrules from Carbonaceous and
	Nittler L. R. Wang J. Jacobsen S. D.	Ordinary Chondrites [#6283]
	Mendybaev R. A.	Most of the highly volatile elements or HVEs (H, C, F, Cl, S) in
		chondrules were likely introduced during parent body
		processes. However, the small but measurable amount of
		HVEs in melt inclusions in chondrule phenocrysts may be
		primary HVEs.
9:45	Fukuda K. * Tenner T. J. Kimura M.	A Temporal Shift of Chondrule Generation from the Inner to
a.m.	Tomioka N. Siron G. Ushikubo T.	Outer Solar System [#6030]
	Chaumard N. Hertwig A. T.	The Al-Mg ages of chondrules from pristine CM and CO
	Kita N. T.	chondrites are systematically younger than those of the
		majority of ordinary chondrite chondrules, suggesting a
		delayed chondrule formation in the outer Solar System.
10:00	Gemma M. E. * Gonzales J. C.	Trace Element Diversity of Chondrule Mesostasis in CV and
a.m.	Ebel D. S.	CR Chondrites [#6232]
		We present trace element analyses of chondrule mesostasis
		in CV and CR chondrites. This statistically significant dataset
		complements existing major element and isotopic datasets
		and addresses formation theories of chondrites and
		their constituents.
PRE-RECO	RDED PRESENTATION	
10:15	Kadlag Y. * Leya I. Mezger K.	Timing and Environment of Chondrule Formation [#6060]
a.m.	Bouvier AS. Haberthür D.	Combining temporal information (from Al-Mg relative ages)
	Hlushchuk R.	with environment (from isotope ratios of He, Ne and Ar) of
		chondrules to understand early solar system processes and
		chondrule formation conditions.
10:25		Q&A
a.m.		

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Warren P. H. * Rubin A. E.	Northwest Africa 12969: Diamonds and Siderophile-Element
p.m.		Evidence Suggest Kinship, or at Least Petrogenetic Analogy,
		with Extreme-Magnesian Ureilites [#6285]
		The NWA 12969 harzburgitic, ultra-magnesian achondrite
		contains diamonds in clumps up to 70 microns long, and has
		a ureilite-like pattern of siderophile element depletions,
		although bulk Zn is low, and Ni/Au ratio is high, by
		ureilite standards.
1:45	Rubin A. E. * Zhang B.	The Nordheim Trio: IAB-an Irons that Experienced
p.m.		Devolatilization and Silicate Vaporization [#6011]
		The Nordheim Trio comprises three IAB-an ataxites
		[Nordheim, ALH 77255, Babb's Mill (Blake's Iron)] that
		experienced impact-devolatilization, silicate vaporization
		and quenching. A silica glass spherule in ALH 77255 formed
		by fractional condensation.
2:00	Zhang B. * Chabot N. L. Rubin A. E.	Fractional Crystallization Modeling of Carbonaceous-Type
p.m.		Iron Meteorites [#6122]
		We present comprehensive fractional-crystallization
		modeling of the CC-type groups (IIC, IID, IIF, IIIF, IVB) and
		the South Byron Trio to reconstruct their crystallization
		processes and initial compositions and to compare CC-type
		asteroidal cores.
2:15	Vaci Z. * Yin QZ. Dey S. Miller A.	Chromium and Oxygen Isotopic Compositions of Ultramafic
p.m.	Ziegler K. Day J. M. D. Agee C. B.	Achondrites: Implications for the Missing Mantle Problem in
	Pack A.	the Asteroid Belt [#6067]
		New oxygen and chromium isotopic analyses show that
		olivine-rich cumulate achondrites are associated with at
		least two unique parent bodies and potentially the
		"anomalous" HED meteorites.
PRE-RECO	RDED PRESENTATIONS	
2:30	Neumann W. * Ma N. Neri A.	Thermal History and Structure of the Tafassite
p.m.	Schwarz W. H. Ludwig T.	Parent Body [#6153]
	Trieloff M. Klahr H. Bouvier A.	We identified a first group of carbonaceous primitive
		achondrites and proposed to name them Tafassites. We
		studied their Pb-Pb SIMS chronological records and
		constrained the accretion and thermal evolution of their
		parent body by numerical modeling.
2:40	Hamann C. Collinet M. *	Petrography of Fine-Grained Domains in Ungrouped
p.m.	Schwinger S. Kaufmann F. E. D.	Achondrite Erg Chech 002: Evidence for Different
	Bonato E. Greshake A. Maturilli A.	Cooling Histories? [#6236]
	Helbert J. Hecht L.	Here we describe the petrography of previously unknown,
		fine-grained magmatic domains in ungrouped achondrite
		Erg Chech 002 and discuss the implications for a multistage
		cooling and crystallization history.

2:50 p.m.	Hahn T. M. Jr * Bose M.	Primitive Achondrite Parent Bodies are Volatile-Rich Compared to Differentiated Achondrites [#6227]
		anhydrous minerals in two Ureilites (LAP 03587 and
		CMS 04048) and two Brachinites (EET 99402 and GRA
		06129). Primitive achondrites are volatile-rich compared to
		differentiated achondrites.
3:00	Davies F. * Daly L. Hallis L. Lee M.	Deformation and Mineral Relationship of Achondrite
p.m.		Meteorites to Reconstruct the Geological History of
		This project is investing achrondrite meteorites ureilite:
		Havero, Nova 001, Reid 016; Aubrite: Cumberland Falls; and
		an anomoulous achondrite: MIL 090356, studying the
		deformation and mineral relationship of these meteorites
		using SEM-EDS and EBSD.
3:10	Khan H. * Leya I.	Re-Establish the Potassium Dating System for
p.m.		The work presented is a follow-up on the oral presentation L
		had the opportunity to give at MetSoc2019. I am extremely
		excited to present this new development as there has not
		been anything done like this in the last 30 years.
3:20	Barbaro A. * Domeneghetti M. C.	Carletonmooreite (Ni3Si) in Shocked Diamond Bearing
p.m.	Litasov K. D. Ferrière L. Pittarello L.	Kenna Ureilite [#6066]
	Nestola E	micro-diamonds and papographite found in ureilites was
		produced by impacts at peak pressures at least of ~15 GPa
		and the presence of Ni3Si highlights the role of Fe-Ni phases
		in diamond growth.
3:30	Danoix F. * Cadel E. Cuvilly F.	Nanostructure and Nanochemistry of Selected Iron
p.m.	Danoix R. Gounelle M. Kern L.	Meteorites Observed at the Nanometric Scale [#6207]
		probe tomography of selected iron meteorites at the
		nanometer scale, and aim at illustrating how nano
		structural/chemical features bear information related to
		their thermo-mechanical history.
3:40		Q&A
p.m.		

Monday, August 16, 2021 CAIs

1:30 p.m. Waldorf

Chairs: Prajkta Mane and Emilie Dunham

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Mane P. * Ross D. K. Simon J. I.	A Population Study of the Refractory Inclusions in Miller
p.m.		Range (MIL) 090019 CO3 Carbonaceous Chondrite [#6275]
		We present a particle size distribution study of CAIs from
		MIL 090019 CO3 chondrite that provides insights into the
		accretionary processes.
1:45	Torrano Z. A. * Desch S. J.	A Reassessment of the Titanium Isotopic Compositions of
p.m.	Dunham E. T. Williams C. D.	FUN CAIs [#6262]
	Mane P.	In FUN CAIs / Titanium is a clue / For late formation.

2:00	Dunham E. T. * Liu MC.	CAIs in Ordinary and Enstatite Chondrites [#6133]
p.m.	Matsuda N. McKeegan K. D.	NC CAIs / Very small and rare, unlike / CC CAIs.
2:15	Ramprasad T. * Seifert L. B.	A Microstructural Examination of a Refractory-Siderophile
p.m.	Zega T. J.	Nugget from the Northwest Africa 8323
		CV3 Chondrite [#6123]
		We investigate the structure and chemical composition of a
		polyphasic refractory-siderophile nugget from a CV3
		chondrite, using electron microscopy techniques to gain
2.20		Insight into its origin.
2:30	Matsuda N. * Liu MC.	Petrography, Oxygen, and Magnesium Isotopic
p.m.	Mickeegan K. D.	CO2 Chondrites [#6110]
		We present the results of petrological characterizations
		oxygen and magnesium isotopic compositions of hercynite-
		rich inclusions in order to better understand the effects of
		secondary processing.
PRE-RECO	RDED PRESENTATION	
2:45	Han J. * Liu MC. Matsuda N.	Mineralogical and Al-Mg Isotopic Study of Fine-Grained Ca-
p.m.	Park C. Keller L. P.	Al-Rich Inclusions [#6267]
		We present high-precision Al-Mg isotopic data of fine-
		grained CAIs from reduced CV3 chondrites, coordinated
		with FIB/TEM analyses, to elucidate their formation
		resigned CAIs
2.55	Liu M -C * Matsuda N	The Discovery of HIDALGO, a New Hibonite Inclusion with
p.m.	Dunham E. T. McKeegan K. D.	FUN Characteristics. in Dar Al Gani 027 (CO3) [#6084]
P		What is HIDALGO? / It has fractionated oxygen isotopes and
		low ²⁶ Al / It is probably a FUN inclusion!
3:05	Martin P. M. C. * Lee M. R.	The Conspicuous Compound Chondrule-CAI Conundrum: A
p.m.		Case Study Within the Brecciated CM2.2 Lithology of the
		Carbonaceous Breccia Aguas Zarcas [#6190]
		Discovery of a new Compound Chondrule-CAI (CCCAI) within
		the brecciated CM2.2 lithology of the carbonaceous breccia
		Aguas Zarcas. Little cockerel / Why do you carry a ball? / Tell
2.15	Krot A N * Nagashima K	On the Nature of Ovugen Isotone Heterogeneity of Igneous
n m	MacPherson G I	Calcium-Aluminum-Rich Inclusions in CV (Viagrano-Type)
p		Carbonaceous Chondrites [#6136]
		Melilite, anorthite, Ti-rich fassaite, perovskite, and davisite
		in the Allende igneous CAIs experienced postcrystallization
		mineralogically controlled O-isotope exchange with the
		external ¹⁶⁰ -poor reservoir (Δ^{17} O ~ –3‰), most likely
		aqueous fluid.
3:25	Manga V. R. * Zanetta P. M.	Thermodynamic Modeling of Equilibrium Solubilities of Ti in
p.m.	Thakur A. Muralidharan K.	Minerals of Calcium-and-Aluminum-Rich Inclusions Under
	Zega I. J.	Nebular Conditions [#6293]
		within CAIs when analyzed in conjunction with
		thermodynamic calculation of condensation, reveal the
		thermochemical landscane of the high temperature region
		of the early solar nebula.

3:35	Q&A
p.m.	

Monday, August 16, 2021 Barringer Lecture 6:00 p.m. Waldorf

Barringer Lecture: Prof. Leslie Rogers, The University of Chicago: Glimpsing the Exoplanet Composition Distribution

Tuesday, August 17, 2021 MISSIONS 8:30 a.m. Williford ABC Chairs: Pierre Haenecour and Nancy Chabot

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Chabot N. L. * Rivkin A. S.	DART – The Double Asteroid Redirection
a.m.	Cheng A. F. Adams E. Y.	Test Mission [#6074]
	Reynolds E. L. DART Team	DART, the Double Asteroid Redirection Test, is NASA's first
		mission that is dedicated to demonstrating a planetary
		defense mitigation technology. DART is planned to launch in
		November 2021 and to impact the asteroid Dimorphos in
		Fall of 2022.
8:45	Parker E. T. * Chan Q. H. S.	Extraterrestrial Non-Protein Amino Acids Identified in
a.m.	Glavin D. P. Dworkin J. P.	Carbon-Rich Particles Returned from
		Asteroid Itokawa [#6101]
		The results of this study mark the first evidence of
		extraterrestrial amino acids in asteroid material collected
		during a sample-return mission and returned to Earth.
9:00	Ishimaru K. * Lauretta D. S.	Modeling of Sediment Deposition on asteroid Bennu's
a.m.		Parent Body [#6080]
		We analyzed clast size distribution and thickness of layered
		structures on Bennu's boulders using OSIRIS-REx data. The
		observed parameters were used to model the hydrothermal
		flow in the parent body.
9:15	Chaves L. C. * Thompson M. S.	Sulfur and Nickel Depletion in Space Weathered Sulfides
a.m.		from Asteroid Itokawa [#6234]
		Despite the relevance of sulfides in airless body regoliths,
		their response under space weathering conditions is still
		poorly understood. Here, we report S and Ni depletion as
		result of space weathering on sulfides from
		asteroid Itokawa.
9:30	Ryan A. J. * Craddock Z. A.	Thermal Conductivity Measurement Plan for Samples
a.m.	Cherian S. K. Gibson M. N.	Returned by OSIRIS-REx [#6237]
	McCommon A. T. Ochoa A. D.	Plans are presented for a nondestructive, noncontact
	Ouyang J. Siegler M. Lauretta D. S.	method to measure sample thermal conductivity.
9:45	Haenecour P. * Bennett C. A.	The OSIRIS-REx Sample Analysis Micro Information
a.m.	Crombie M. K. Fitzgibbon M.	System (SAMIS) [#6083]
	Ferro A. Hammond D.	The OSIRIS-REx mission is developing the Sample Analysis
	McDonough E. Westermann M. M.	Micro Information System (SAMIS) with the goals of
	Barnes J. J. Connolly H. C. Jr.	facilitating sample analysis by mission scientists, as well as
	Lauretta D. S.	tostering data stewardship practices.

PRE-RECO	RDED PRESENTATION	
10:00 a.m.	Van Ginneken M. * Wozniakiewicz P. J.	Impact Experiments of Chondrule Fragments on Stardust Analogue Foils: Clues to the Nature of Chondrule-Like Material in Wild 2 [#6167] We present an experimental study of craters and residues resulting from the impact of fragments of chondrules on Stardust analogue foils. Comparison with Stardust data will allow drawing comprehensive picture of the chondrule population in Wild 2.
10:10 a.m.	Daly L. * Lee M. R. Darling J. R. McCarrol I. Yang L. Cairney J. Forman L. V. Bland P. A. Benedix G. K. Fougerouse D. Rickard W. D. A. Saxey D. W. Reddy S. M. Bagot P. A. J.	Ice Ice Baby: Improving Water Quantification of Hydrous Minerals by Cryo-Focussed Ion Beam and Cryo Vaccum Transfer to Atom Probe [#6032] Phyllosilicates are key targets for upcoming sample return missions, we outline a new cryo-FIB to atom probe approach that detects novel nanophases and provides accurate quantification of the water abundance of phyllosilicates.
10:20 a.m.	Westphal A. J. * Pister K. S. J. Alvara A.	Rapid Multi-Comet Sample Return Using Swarms of Tiny Interplanetary Spacecraft [#6174] Spectacular advances in the last decade in microelectronics and MEMS technology enable the development of tiny (~10g), inexpensive, autonomous spacecraft that could be used for rapid sample return from dozens of comets.
10:30 a.m.	Bibring J. P. * Pilorget C. Okada T. Hamm V. Brunetto R. Yada T. Loizeau D. Riu L. Usui T. Moussi- Soffys A. Hatakeda K. Nakato A. Yogata K. Abe M. Aléon-Toppani A. Carter J. Chaigneau M. Crane B. Gondet B. Kumagai K. Langevin Y. Lantz C. Le Pivert-Jolivet T. Lequertier G. Lourit L. Miyazaki A. Nishimura M. Poulet F. Arakawa M. Hirata N. Kitazato K. Nakazawa S. Namiki N. Saiki T. Sugita S. Tachibana S. Tanaka S. Yoshikawa M. Tsuda Y. Watanabe S.	First NIR Hyper-Spectral Imaging of Hayabusa2 Returned Samples by the MicrOmega Microscope within the ISAS Curation Facility [#6276] We present the preliminary outcomes of the analyses performed with MicrOmega (a hyperspectral NIR microscope) on asteroid Ryugu samples collected and returned by the Hayabusa2 mission.
10:40 a.m.	Yada T. * Abe M. Nakato A. Yogata K. Miyazaki A. Kumagai K. Hatakeda K. Okada T. Nishimura M. Furuya S. Yoshitake M. Iwamae A. Soejima H. Hitomi Y. Riu L. Lourit L. Pilorget C. Hamm V. Brunetto R. Bibring JP. Cho Y. Yumoto K. Yabe Y. Sugita S. Tachibana S. Sawada H. Sakamoto K. Hayashi T. Yamamoto D. Fukai R. Sugahara H. Yurimoto H. Usui T. Watanabe S. Tsuda Y.	Initial Descriptions of Asteroid Ryugu Samples Returned by Hayabusa2 [#6186] C-type asteroid Ryugu samples returned by Hayabusa2 experienced initial descriptions conducted by JAXA. They are described with an optical microscope, a balance, a visible spectrometer, an FT-IR, and a MicrOmega.
10:50 a.m.		Q&A

Tuesday, August 17, 2021 IMPACTS 8:30 a.m. Waldorf Chairs: Christian Koeberl and George Flynn

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Flynn G. J. * Durda D. D.	Limits on Asteroid Kinetic Impact Deflection from
a.m.	Strait M. M. Macke R. J.	Hypervelocity Cratering [#6037]
		Hypervelocity impact experiments show the maximum
		momentum change without disruption for a carbonaceous
		meteorite is ~10x less than for an ordinary chondrite, and
		deflection of carbonaceous asteroids may require multiple
		successive impacts.
8:45 a m	Knicely J. J. C. * Herrick R. R. Daly T. Barnouin O	A Reexamination of Low-Velocity Oblique Cratering with New Techniques [#6290]
		We reexamine low-velocity oblique cratering with new
		techniques. These experiments are a prelude to high-
		velocity experiments, but may have relevance to secondary
		cratering on terrestrial bodies.
9:00	Alexander A. M. * Marchi S.	Modeling Impact-Induced Porosity and Fracturing on Fe-
a.m.	Chocron S. Walker J.	Ni Bodies [#6200]
		In this work, we use CTH and iSALE shock physics codes to
		explore impact-induced porosity and fracturing in materials
		relevant to Asteroid (16) Psyche (Fe-Ni alloys and iron
		meteorites) and compare with previous in situ
		impact experiments.
9:15	Feignon JG. Schulz T. Ferrière L.	Examining the (Potential) Presence of a Preserved Impactor
a.m.	Goderis S. de Graaff S. J. Kaskes P.	Signature in the Impact Melt Rocks of the Chicxulub Impact
	Déhais T. Claeys P. Koeberl C. *	Structure Peak Ring [#6238]
		Here are presented results related to the search for the
		presence of a possible meteoritic component within the
		Chicxulub impact structure peak ring impact melt rocks,
		using detailed highly siderophile element and Re-Os
		isotopic investigations.
9:30	Huber M. S. Kovaleva E. Mautle F.	First Discovery of Proximal Vredefort Impact Ejecta in
a.m.	Hainsworth J. Koeberl C. *	South Africa [#6240]
		We report on the first discovery of possible proximal ejecta
		from the Vredefort impact event.
9:45	Koeberl C. * Mojzsis S. J.	The Needle in the Haystack Problem: Search for Meteoritic
a.m.		Contamination and Identification of Projectile Type in
		Terrestrial Impact Events [#6194]
		It is very difficult to distinguish some meteorite types in
		terms of meteoritic contamination in impact melt rocks and
		ejecta, but this is of particular importance for the early
		Archean impact record.

PRE-RECORDED PRESENTATION		
10:00 a.m.	Ciocco M. * Roskosz M. Gounelle M. Fiquet G. Leroux H.	Self-Consistent Determination of Impact Timescales by Growth and Diffusion Kinetics of Olivine and Pyroxene Polymorphs in 3 Highly Shocked L Chondrites [#6132] Microstructures and chemical partitions of high pressure polymorphs are characterized by nanoSIMS and STEM in 3 shocked L chondrites. Insights on the transformation mechanisms and associated elemental diffusion provide new shock timescales.
10:10 a.m.	Schmalen A. * Luther R. Artemieva N.	Campo del Cielo Strewn Field: Modeling and Comparison with Observations [#6044] Reconstruction of the Campo del Cielo impact event, i.e., to estimate the minimal pre-atmospheric mass and velocity of the meteoroid, its fragmentation during the atmospheric entry and to compare the resulting strewn field with the observed one.
10:20 a.m.	Riches L. J. * Pickersgill A. E. Daly L.	Shock Metamorphism in Feldspar from the Chicxulub Impact Structure [#6158] This project investigates shock deformation features in both plagioclase and alkali feldspar from the Chicxulub impact structure. Samples have been mapped using SEM-EDS and will be studied further using EBSD.
10:30 a.m.	Kurosawa K. * Ono H. Niihara T. Mikouchi T. Sakaiya T. Kondo T. Tomioka N. Genda H. Tada T. Tada R. Kayama M. Koike M. Sano Y. Matsuzaki T. Murayama M. Satake W. Okamoto T. Matsui T.	Shock Recovery of Macro Blocks of Rocky Materials with Decaying Shock Waves [#6163] We have developed an experimental technique for shock recovery with decaying compressive pulses. The method allows as to collect a shocked sample experienced a variety of peak pressure depending on the initial location only at a single shot.
10:40 a.m.	Bender Koch C. *	Sampling of Impact Plume Components from Wabar Impact Craters [#6220] It is suggested to use information from analysis of the material inside plume-trapping vesicles as a proxy for the conditions in the impact plume.
10:50 a.m.	Gritsevich M. * Moilanen J. Visuri J. Heinlein D. Schweidler F. Flohrer J. Oberst J.	Reanalysis of the 24 November 1970 Fireball [#6216] We demonstrate that the EN ₂ 41170 fireball was the fall of the Ischgl meteorite.
11:00 a.m.		Q&A

Tuesday, August 17, 2021 MARS 1:30 p.m. Williford ABC Chairs: Amanda Ostwald and Arya Udr

Chairs: Amanda Ostwaid and Arya Udry		
Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Ostwald A. M. * Udry A. Gross J.	Nakhlite and Chassignite Parental Melt
p.m.	Day J. M. D.	Compositions Compared [#6209]
		We present and compare major, minor, and trace element
		abundances present in nakhlite and chassignite parental
		melt compositions determined from melt inclusion analysis.

1:45	Humayun M. * Yang S. Irving A. J.	An Ancient Martian Ocean Inferred from Sulfide Immiscibility
p.m.	Righter K.	in Meteorites [#6243]
		Elemental abundances in two Amazonian-age meteorites
		indicate that the depleted shergottites formed in a large
		volcanic pile, the basal flows of which were sulfidized in an
		ancient martian ocean.
PRE-RECO	RDED PRESENTATION	
2:00	Christou E. V. * Hallis L. J. Daly L.	Northwest Africa 8159 Apatite Versus Lafayette Apatite:
p.m.	Hayward C. L. Lee M. R.	Effects of Terrestrial Weathering Versus
		Martian Alteration [#6297]
		We have analyzed NWA 8159 and Lafayette apatite via
		correlative SEM, EPMA, TEM and APT to acquire an insight
		into their origin and the geochemical reaction pathways of
		the primary and secondary alteration processes that
		affected these Martian rocks.
2:10	Piercy J. D. Bridges J. C. * Hicks L. J.	Odinite and Saponite Replacement of Carbonate in the
p.m.		Lafayette Nakhlite: Part of the CO2-CH4 Cycle
		on Mars [#6159]
		Textural and chemical analysis of Lafayette carbonate
		dissolution illustrate a process of subsurface dissolution to
		explain the low abundance of detected carbonate on Mars
		and a source of martian methane.
2:20	Griffin S. * Keller T. Daly L.	Nakhlite Emplacement Mechanisms from Electron
p.m.	Lee M. R. Cohen B. E. Forman L. V.	Backscatter Diffraction [#6185]
	Piazolo S. Trimby P. W.	Volcano on Mars / Emplaced nakhlites now on Earth / How
	Baumgartner R. Benedix G. K.	did they all form?
2:30	Malarewicz V. * Beyssac O.	Investigating Main and Accessory Minerals in the Martian
p.m.	Zanda B. Hewins R. Pont S.	Regolith Breccia Northwest Africa 7533 by Raman and
	Bouley S.	Luminescence Spectroscopy [#6128]
		As a martian breccia, Northwest Africa 7533 provides
		insights on the history and evolution of the primitiv crust. In
		this study, we used Raman and luminescence spectroscopy
		to investigate the structure and REE content of main and
		accessory minerals.
2:40		Q&A
p.m.		
3:40		Q&A continued
p.m.		

Tuesday, August 17, 2021 PRESOLAR GRAINS 1:30 p.m. Waldorf Chairs: Nan Liu and Reto Trappitsch

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Liu N. * Ogliore R. C.	NanoSIMS Isotopic Investigation of the CO3 Chondrite
p.m.		Dominion Range 14359 [#6069]
		We report our NanoSIMS H, C, and O isotopic imaging
		results for the CO3 chondrite DOM 14359. We compare
		DOM 14359 with DOM 08006 for their inventories of
		presolar and interstellar grains to discuss their different
		degrees of secondary processing.

1:45	Liu N. * Dauphas N. Cristallo S.	Oxygen and Magnesium-Aluminum Isotopic Systematics of
p.m.	Ogliore R. C.	Presolar Nanospinel Grains from Cl
		Chondrite Orgueil [#6215]
		We report NanoSIMS O isotope data for 109 new presolar
		oxides and Al-Mg isotope data for 24 of the grains (23 spinel
		grains and one Al-rich oxide), including four Group 2 and 20
		Group 1 grains.
2:00	Seifert L. B. * Haenecour P.	Transmission Electron Microscopy Study of a Presolar
p.m.	Ramprasad T. Zega T. J.	Silicate Grain from the Uniquely Altered Miller Range 07687 Chondrite [#6124]
		We report the structure and chemistry of a presolar silicate
		grain from the Miller Range 07687 carbonaceous chondrite.
2:15	Stephan T. * Bloom H. E.	Correlated Molybdenum and Ruthenium Isotopes in Presolar
p.m.	Davis A. M. Hoppe P.	Silicon Carbide [#6270]
	Korsmeyer J. M. Pellin M. J.	Mo and Ru isotopes analyzed with high precision in presolar
	Regula A. Sheu S.	SiC grains using CHILI show a clear correlation between s-
		process signatures in No and Ru. Contributions by the s-
		first time
2.30	Barosch I * Nittler I R Dobrică F	Presolar O- and C-Anomalous Grains in Pristine Ordinary
n.m	Brearley A Hezel D C	Chondrite Matrices [#6137]
p	Alexander C M O'D	We used the NanoSIMS to investigate the abundances
		compositions and characteristics of presolar O- and C-
		anomalous grains in pristine matrices of unequilibrated
		ordinary chondrites.
2:45	Trappitsch R. * Ong WJ. Dory C. J.	Simultaneous Analyses of Titanium and Molybdenum
p.m.	Shulaker D. Z. Lugaro M.	Isotopic Compositions in Presolar SiC Grains [#6239]
	Savina M. R. Weber P. K.	Simultaneous analyses of titanium and molybdenum in
	Isselhardt B. H. Amari S.	presolar SiC mainstream grains allow us to correlate galactic
		chemical evolution and s-process nucleosynthesis.
3:00	Meyer B. S. * Bermingham K. R.	Titanium-46 Production in Exploding White
p.m.		Dwarf Stars [#6274]
		correlated is and so anomalies in Solar System objects are
		distinct carriers. We speculate they could also arise from
		dust from rare thermonuclear supernovae that carries
		both isotopes.
PRE-RECO	RDED PRESENTATION	
3:15	Hoppe P. * Leitner J.	The Imprint of Supernova Dust in the Solar Nebula [#6148]
p.m.		We review abundances of presolar supernova grains in
		primitive meteorites and discuss implications for the
		inventory of interstellar dust in the solar nebula.
3:25	Bodénan JD. * Hutchison M.	Nucleosynthetic Variations Generated by Size and Density
p.m.	Mayer L. Schönbächler M.	Driven Sorting of Dust in Protoplanetary Disk [#6180]
		We use smoothed particle hydrodynamics simulations to
		study the density and mass sorting of dust, especially
		presolar grains in a protoplanetary disk to assess its effects on their distribution and nucleosynthetic variations in solar
		system material.
L	1	<i>I</i>

3:35	Shaw K. M. M. * Coath C. D.	Evidence for Presolar Titanium in Silicate Stardust [#6102]
p.m.	Elliott T.	Using in situ techniques, we have identified highly
		anomalous material in the ungrouped carbonaceous
		chondrite Acfer 094 that possesses a high Si-O and low C
		bulk composition. Possible evidence for presolar Ti in
		silicate phases.
3:45	Singerling S. A. * Nittler L. R.	Transmission Electron Microscopy of an AOA-Like Presolar
p.m.	Barosch J. Dobrică E. Brearley A. J.	Grain from Semarkona [#6029]
	Stroud R. M.	We detail TEM microstructural and chemical observations of
		an unusual AOA-like presolar grain from Semarkona with
		implications for circumstellar conditions around its
		progenitor AGB star as well as secondary processes on its
		asteroidal parent body.
3:55		Q&A
p.m.		

Tuesday, August 17, 2021 POSTER SESSION: ACHONDRITES 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Kouvatsis I. Cartwright J. A.	Investigating the Impact Flux of the Early Solar System Through
	the Analysis of HEDs and Mesosiderites [#6208]
	Mesosiderites / Eucrites to investigate / Solar system flux.
Regula A. Bloom H. E. Dauphas N.	Toward Trace Element Concentrations with CHILI [#6287]
Davis A. M. Korsmeyer J. M.	CHILI, a RIMS instrument at the University of Chicago, offers yet
Krawczynski M. J. Pellin M. J. Sheu S.	untapped capabilities for trace element ratio measurements on
Stephan T.	the micrometer scale. Toward this goal, we present Ru/Mo
	measurements from several well-characterized iron meteorites.
Valdes M. C. Blättler C. L. Razionale D.	A Reevaluation of the Petrogenetic Relationships Among HED
Heck P. R.	Meteorites with Calcium Isotopes [#6268]
	To shed light on Vesta's magmatic history and investigate the
	nature of HED relationships, we aim to quantify the effects of
	differentiation processes such as partial melting and fractional
	crystallization on Ca isotopes.

Tuesday, August 17, 2021 POSTER SESSION: CARBONACEOUS CHONDRITES 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Aravena-Gonzalez C. S. Moncada D.	A Detail Petrographic of Two CO3 Chondrites from Atacama
Martínes de Los Ríos R.	Desert, Chile [#6138]
	Petrological, chemical and mineralogical study of Melt Inclusions
	Assemblages (MIAs) found mainly in olivine crystals present in El
	Médano 389 and El Médano 397, CO3 Chondrites. Using Raman
	spectroscopy, IR and Laser Ablation ICP-MS.
Kerraouch I. Bischoff A. Zolensky M. E.	The Metal-Rich Lithology Within the Aguas Zarcas Breccia:
Hellmann J. L. Wölfer E. King A. J.	Characterization, Origin, and Evolution [#6201]
Patzek M. Marrocchi Y. Pack A.	We investigated the petrography, mineralogy, chemistry, and
Ludwig T. Trieloff M.	isotopic composition of an unusual 'metal-rich lithology' (termed
	Met-1) from the CM chondrite Aguas Zarcas in order to better
	understand its characteristics, affinities, origin, and
	formation history.

Tuesday, August 17, 2021 POSTER SESSION: CURATION AND EDUCATION 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Heck P. R. Holstein J.	A Brief History of the Meteorite Collection at the
	Field Museum [#6222]
	The Field Museum started with a meteorite collection in 1894, the
	year it was established. It currently houses the largest meteorite
	collection at a private scientific research institution. We will
	present the collection's history and current status.
Chennaoui Aoudjehane H. Berrada O.	Attarik Foundation: Two Years of Meteoritics and Planetary
Aoudjehane M. Arif S. Jadid F. Z.	Science Dissemination [#6265]
Boukhris S. Zennouri L.	ATTARIK Foundation is an autonomous and non profit NGO
Ould Mohamed Naviee E. C. El Hachemi E.	dedicated to the promotion of meteoritics and planetary sciences,
Shisseh T. Haissen F. Makhoukhi S.	a summary of two years of rich activities will be presented.
Anghel S. Chirita D. Cretu M. Mihalcea I.	Astrojunior: An Educational Project for Interactive Teaching of
Moldovan R. Naiman M. Soare A.	Planetary Science [#6028]
Stancu C. Stoica A.	The full implementation of an online planetary science interactive
	workshop for children all ages.

Tuesday, August 17, 2021

POSTER SESSION: ENSTATITE AND ORDINARY CHONDRITES 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Dobrică E. Ohtaki K. K. Breadley J.	TEM/EELS Detection of Water in Extremely Dry Phosphates from
	Ordinary Chondrites [#6081]
	This study suggests that electron energy-loss spectroscopy is a
	useful tool for detecting tens of ppm-level water on a scale of a
	few microns.
Downes H. Goodrich C. A.	Origin of Enstatite Chondrite Fragments in Almahata Sitta:
Greenwood R. C. Abernethy F. J.	Implications for the Enstatite Chondrite Parent Body [#6089]
	Almahata Sitta contains as wide a range of enstatite chondrite
	fragments as found in meteorite collections on Earth. Is the
	parent body for enstatite chondrites a mega-breccia containing all
	known enstatite chondrite types?
Ivanova M. A. Zinovieva N. G.	Ungrouped Chondrite Chug-Chug 086 [#6108]
Franchi I. A. Lorenz C. A. Teplyakova S. N.	A new ungrouped chondrite Chug-Chug 086 has affinities with
	reduced chondrites EM 301, NWA 7135 and Acfer 370, although,
	in general, its oxygen isotopic composition, average chondrule
	size and Co content in kamacite are in the range of H chondrites.
Ostrowski D. R.	Compression Strength of Ordinary Chondrites [#6126]
	The compression strength for Tamdakht and other ordinary
	chondrites is measured. Compression test elastic modulus is
	compared to the moduli determined from acoustic velocity.
Chennaoui Aoudjehane H. Agee C. B.	Wad Lahteyba H5 Moroccan Fall of June 27th,2019 [#6245]
Jadid F. Z.	Wad Lahteyba is an H5 eye witnessed Moroccan fall that we will
	be describing in the presentation.
Chennaoui Aoudjehane H. Agee C. B.	Al Farciya LL6 Moroccan Fall of August 20th, 2019 [#6249]
Bouragaa A. Jadid F. Z.	Al Farciya is an LL6 fall that occurred in the south of Morocco on
	August 2019, we will be presenting the fall circumstances and the
	classification of the meteorite.

Tuesday, August 17, 2021 POSTER SESSION: EARLY SOLAR SYSTEM: DISK CONDITIONS AND PROCESSES 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Desch S. J. Mane P. Dunham E. T.	Oxygen Isotope Reservoirs in the Solar Nebula [#6244]
Williams C. D.	Our astrophysical model combining magnetic forces on dust
	during star formation and pebble flux in the disk, reproduces the
	oxygen isotopic compositions and oxygen fugacities of CAIs,
	explaining why the Sun is at D ¹⁷ O=–29 but CAIs at D ¹⁷ O=–23.
Burbine T. H. Greenwood R. C.	Investigating the Origin of Oxygen Isotopic Variations
	in Meteorites [#6210]
	We are currently undertaking modeling to investigate how the
	oxygen isotopic variations seen in meteorites can be related to
	mixtures of simple end-member nebula components.

Tuesday, August 17, 2021 POSTER SESSION: SPACE WEATHERING 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Thompson M. S. Dukes C. A.	Revealing the Combined Effects of Simulated Solar Wind
Loeffler M. J. Morris R. V. Glotch T. G.	Irradiation and Micrometeoroid Bombardment of a
Keller L. P.	Carbonaceous Chondrite [#6289]
	We perform coordinated analysis of a carbonaceous chondrite
	that has been subjected to laboratory experiments simulating
	micrometeoroid bombardment and solar wind irradiation.
Chaves L. C. Thompson M. S. Prince B.	Simulating Micrometeoroid Impacts on Magnetite: Implications
Loeffler M. J.	for Remote Sensing Observations and Returned
	Sample Analysis [#6298]
	Here we present the results of pulsed laser irradiation
	experiments on magnetite pressed pellets .

Tuesday, August 17, 2021 POSTER SESSION: IMPACTS 5:30 p.m.

5156 piim	
Authors (*Denotes Presenter)	Abstract Title and Summary
Anghel S. Nedelcu D. A. Birlan M.	Phase Two of MOROI Network: Connection with FRIPON and
Boaca I. Colas F. Malgoyre A.	Pipeline Development for Studying Meteoroids [#6027]
MOROI and FRIPON Teams	The current capability of the MOROI network, its expansion, and
	the gradual integration with the FRIPON international database.
	Moving towards a complete pipeline to track the atmospheric
	impacts, from source origin, to strewn field computation.
Clarke J. C. Cartwright J. A. Stowell H. H.	Exploration of the K-Pg Impactor Through a Study of Tektites from
Tobin T. S.	the Gulf Coastal Plain [#6277]
	The Chicxulub impactor is believed to be the impactor responsible
	for the end of the Cretaceous period and extinction of non-avian
	dinosaurs. The purpose of this study is to conclude the parent
	body of the impactor using neodymium analysis.

Tuesday, August 17, 2021 POSTER SESSION: MARS AND MOON 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Bechtold A. Schulz T. Wegner W.	Geochemistry of Lunar Regolith Breccia Northwest Africa 11962
Mader D. Patterer C. Koeberl C.	and Its Potential Source Region/Crater in the Procellarum
	KREEP Terrane [#6250]
	We describe a possible source region on the Moon for lunar
	meteorite NWA 11962 from geochemical data.
Bhanot K. K. Downes H.	Multiple Origins of Spinel Symplectite Textures in Lunar Dunites
	72415 and 72417 [#6090]
	CT scanning of lunar dunites reveals four different types of spinel
	symplectite. Each type has a different origin, with spinel-pyroxene
	clusters being formed after mantle garnet, and others formed by
	interaction with melts at different depths.

Tuesday, August 17, 2021 POSTER SESSION: MISSIONS 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Keller L. P. Berger E. L.	Solar Energetic Particle Tracks in Itokawa Samples: Implications
	for Regolith Development on Near-Earth Asteroids and
	Space Weathering [#6111]
	We use solar energetic particle tracks in Itokawa grains to infer
	surface exposure ages, space weathering rates, and
	regolith dynamics.
Yokochi R. Mueller P. Heck P. R.	Development of Stepwise Heating Gas Extraction System for the
Campbell A.	Analyses of Noble Gases in Mission-Returned Samples [#6196]
	Aiming at better resolving different noble gas components in
	mission-returned samples, a laser-based stepwise heating gas
	extraction system was developed. The temperature stability and
	accuracy of the heating system will be reported at the meeting.

Tuesday, August 17, 2021 POSTER SESSION: MICROMETEORITES 5:30 p.m.

5.50 p.m.	
Authors (*Denotes Presenter)	Abstract Title and Summary
Boyd M. R. Cartwright J. A. Singh J.	Nanoscale Chemical Heterogeneity in an Antarctic Micrometeorite
Bagot P. A. J. Moody M. P.	Revealed by Atom Probe Tomography [#6278]
	We analysed a micrometeorite using atom probe tomography,
	spatially resolving geochemical trends on the nanometre-scale.
	We identify heterogeneous elemental distributions that may
	represent atmospheric entry processing.

Tuesday, August 17, 2021 POSTER SESSION: CHONDRULES AND CAIS

5:30	p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Hutson M. H. Ruzicka A. M. Pugh R. N.	Harold (a) and Harold (b): Two New Meteorites from Ness
	County, Kansas [#6064]
	Classification of two new L6 chondrites from Ness County Kansas
	demonstrates lack of literature data needed for pairing, and
	suggests that more than the roughly three dozen currently
	catalogued stones were picked up in the late 1800s.
Dunham E. T. Desch S. J. Torrano Z. A.	A Reassessment of Aluminum-26 in FUN CAIs [#6273]
Mane P. Williams C. D.	The FUN CAIs / 26-Aluminum / Uniform or not?

Tuesday, August 17, 2021 POSTER SESSION: EXPERIMENTS 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Liu C. X. Heard A. W. Yokochi R.	MERLIN — An Innovative Experimental Leaching System for Mars
Dauphas N.	and Beyond [#6260]
	We introduce MERLIN, an instrument designed to carry out
	experimental leaching to simulate aqueous alteration under
	controlled atmosphere on planetary bodies, using the production
	of clay on early Mars as an example.
Ouzillou M. Herd C. D. K.	Does Meteoritic Metal Change with Forging? An
	Experimental Study [#6187]
	A study to determine the bulk elemental changes that occur in the
	meteorite Gebel Kamil during subsequent stages of forging, and
	the implications in linking artifacts, such as Tutankhamun's
	dagger, created from meteoritic iron to a known meteorite.

Thursday, August 19, 2021 POSTER SESSION: SMALL BODIES 5:30 p.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Vodniza A. Q.	The Asteroid Apophis [#6007]
	I took part in the international research team "99942 Apophis
	2021 Observing Campaign." I captured several images and videos
	of the asteroid Apophis, and I calculated the orbital elements and
	physical parameters.

Thursday, August 19, 2021 CARBONACEOUS CHONDRITES 8:30 a.m. Williford ABC Chairs: Romy Hanna and Kaitlyn McCain

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Yang X. * Hanna R. D. Davis A. M.	A Possible Record of an Active Asteroid: Discovery of a
a.m.	Neander A. I. Heck P. R.	Compact Lithology in the Aguas Zarcas
		CM Chondrite [#6075]
		We found a previously unreported lithology of compact
		fragments in the Aguas Zarcas chondrite, which would
		advance our understanding of the regolith evolution of
		carbonaceous chondrites and the potential prevalence of
		active asteroids.
8:45	Hanna R. D. * Ketcham R. A.	3D Porosity of Fine-Grained Rims in CM Murchison via XCT
a.m.	Edey D.	Imaging with Xe Gas [#6219]
		we examine microporosity within Civi Murchison in 3D
		the peble ges Ve, which is highly attenuating to V rays
0.00	Nic N X * Chan X X Honn T	A Condensation Origin of Potassium and Bubidium Isotonic
9.00 a m	Hull V Zhang Z L Teng E $_{-7}$	Variations in Carbonaceous Chondrites [#6217]
a.m.	Shahar A Daunhas N	Rubidium and notassium isotones suggest evanoration and
		nartial condensation of them into chondrules is the main
		cause of Rb and K depletion and isotopic variation in
		carbonaceous chondrites.
9:15	Zega T. J. * Schrader D. L.	Microstructural Analysis of a Sulfide Grain in the Matrix of
a.m.		the Sutter's Mill CM-Like Carbonaceous Chondrite [#6280]
		We report on the microstructure of a sulfide grain the
		Sutter's Mill CM-like carbonaceous chondrite. In situ
		alteration, presumably on the parent body, altered and
		oxidized its microstructure, leading to the formation
		of magnetite.
9:30	McCain K. A. * Liu M-C.	Matrix-Matched ⁵³ Mn- ⁵³ Cr Ages of Dolomite and Calcite in
a.m.	Brearley A. J. McKeegan K. D.	CM and CI Chondrites [#6263]
		We present measurements of the ⁵³ Mn- ⁵³ Cr ages of
		carbonates in the CM and CI chondrites Boriskino, ALH
		84034, and Alais made using matrix-matched
0.45		dolomite standards.
9:45	Chenhaoul Aouajenane H. *	from Moreceo [#C202]
a.m.	Agee C. B. Ziegier K. Garvie L. A. J.	Jrom Morocco [#6303]
	Zolonsky M. Schmitt Konnlin D.	in Morocco, analysis supporting the specificity and unicity of
	Trif I	this meteorite will be given in the presentation. Tarda is a
		nerfect analog material for the space missions to the C-
		type meteorites
PRE-RECC	RDED PRESENTATION	
10:00	Ogliore R. C. * Carpenter P.	Iron-Titanium Sulfide and Phosphide Spherules in Acfer
a.m.	Wang A. Krawczynski M. Vacher L.	182 (CH ₃) [#6143]
		An iron-titanium sulfide object and phosphide spherules in
		Acfer 182 provide evidence that CH chondrites accreted
		impact-liberated debris from reduced parent bodies.

10:10	Leitner J. * Vollmer C. Kodolányi J.	Investigation of the Silicon Nitride Inventory of
a.m.	Hoppe P.	Carbonaceous Chondrites [#6183]
		N-isotopic compositions of Silicon nitride from three
		carbonaceous chondrites indicate formation at larger
		heliocentric distances than Si3N4 from E-chondrites (ECs),
		while Isheyevo-Si3N4 is isotopically light and occurs in EC-
		like assemblages.
10:20	Arribard Y. * Baklouti D. Lantz C.	Variations of Mineralogy, Hydration and Organic Content
a.m.	Aléon-Toppani A. Borondics F.	Within CM Chondrites Determined by MIR
	Djouadi Z. Doisneau B.	Hyperspectral Imaging [#6149]
	Nakamura T. Sandt C. Brunetto R.	MIR reflectance hyperspectral imaging measurements and
		data process including k-means clustering allow us to
		characterize and colocalize at the micrometric scale the
		mineralogy, hydration and organic content on millimetric
		surfaces of chondrites.
10:30	Dionnet Z. * Aléon-Toppani A.	FTIR Spectroscopy and X-CT Characterization of the New CM
a.m.	Rubino S. Suttle M. D. Lantz C.	Aguas Zarcas [#6099]
	Grieco F. Baklouti D. Djouadi Z.	We report the result of X-CT and FTIR spectroscopy
	Rotundi A. Scheel M. Borondics F.	measurements on fragments from the new CM Aguas Zarcas
	Heripre E. Avdellidou C.	(AZ). We discuss the porosity, the role of hydrated minerals
	Brunetto R.	in the evolution of organic matter and compare AZ with
10.10		other CM chondrites.
10:40	Bose M. * Hahn I. M. Jr. Jin Z.	Silicate Minerals in CM Carbonaceous Chondrites Murchison
a.m.		and Aguas Zarcas [#6078]
		Silicate minerals in Aguas Zarcas has elevated hydrogen
		isotopic ratios compared to Murchison. Isolated olivines in
		the Murchison matrix have higher D/H ratios but similar
10.50	Cienti E * Hildebrand A D	Char Strength and Sciemia Valagities of the
10:50		Sileur Silengin und Seismic Velocities of the
a.111.		Shar strength and seismic velocities have been measured
		for a Murchison meteorite individual although slightly
		complicated by Murchison's preciation. Dynamic elastic
		constants have also been calculated for this carbonaceous
		chondrite lithology.
11:00		0&A
a.m.		

Thursday, August 19, 2021 ACHONDRITES II 8:30 a.m. Waldorf

Chairs: Maria Valdes and Jennifer Gorce

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Valdes M. C. * Heck P. R.	Northwest Africa (NWA) 13993: A Newly Classified
a.m.		Brecciated Eucrite [#6266]
		We have conducted detailed petrographic and geochemical
		analyses to classify an achondritic meteorite specimen
		acquired by the Field Museum in 2020 as a
		brecciated eucrite.

8:45	Kiefer W. S. * Mittlefehldt D. W.	Thermal Evolution on Asteroid 4 Vesta in the Magma
a.m.		Ocean Regime [#6079]
		The eucrite parent body (likely 4 Vesta) had a magma ocean
		in its early history, implying that convective heat transport
		dominated its thermal evolution. Models are consistent with
		geochemical constraints if it begins with ~50% of
		canonical ²⁶ Al.
9:00	Gorce J. S. * Mittlefehldt D. W.	Assessing Domains of Equilibrium in Highly
a.m.	Simon J. I.	Metamorphosed Eucrites [#6112]
		Highly metamorphosed eucrites such as Elephant Moraine
		90020 preserve evidence for localized equilibrium. Here, we
		assess whether textural or chemical observations provide
		the best constraints for identifying metamorphically
		equilibrated areas.
PRE-RECO	RDED PRESENTATION	
9:15	Datta C. * Amelin Y. Krestianinov E.	Geochronological Evaluation of the Cooling Rate of the
a.m.		Diabasic Angrite Northwest Africa 12320 [#6142]
		In this study, we calculate a model cooling rate for the
		diabasic angrite meteorite Northwest Africa 12320, using
		absolute Pb-Pb ages for acid soluble and acid insoluble
		minerals within it, and their respective
		closure temperatures.
9:25	Ono H. * Takenouchi A.	Silica Minerals in Northwest Africa
a.m.	Mikouchi T. Yamaguchi A.	1878 Mesosiderite [#6140]
	Sugiura N.	We studied a mesosiderite NWA 1878 to estimate the
		transformation conditions of silica minerals. Pyroxene in
		NWA 1878 and our previous experiments indicate that
		cristobalite and quartz form in a cooling rate faster than
0.05		0.003-0.01 C/day at >850 C.
9:35	Rider-Stokes B. G. *	Revising the Angrite Fractionation Line: New Insights from
a.m.	Greenwood R. C. Anand M.	High-Precision Oxygen isotope Studies [#60/1]
	Franchi I. A. White L. F.	Here we present new oxygen isotope data for angrite
		investigated, the only known shocked angrite NW(A 7202
		investigated, the only known shocked anglite NWA 7203,
		now angrite fractionation line
9.15		Reday and Fractional Crystallization of
a m	Ash R D McDonough W F	Mesosiderite Metal [#6213]
		We examine the evidence within mesosiderite metal for
		redox during the metal silicate mixing phase of mesosiderite
		formation and explore the possibility that the metal
		experienced some fractional crystallization.
9:55	Reger P. M. * Zhang B.	Chronology of the Unique Angrite Northwest
a.m.	Gannoun A. M. Regelous M.	Africa 10463 [#6235]
	Agee C. B. Bouvier A.	Using the Pb-Pb and Al-Mg chronometers, we determined
		that the unique angrite Northwest Africa 10463 formed at
		4560.25 ± 0.18 Ma, belonging to a group of angrites with
		intermediate ages, distinct from the quenched and coarse-
		grained angrites.

10:05	Mittlefehldt D. W. *	Mesosiderite Silicates vs. HED Polymict Breccias [#6251]
a.m.		Mesosiderite silicates are broadly similar to howardites, but
		the similarities disappear upon closer examination.
		Petrologic and compositional data indicate that
		mesosiderites and howardites are derived from
		different asteroids.
10:15	Krestianinov E. * Datta C. Amelin Y.	Uranium Isotopic Composition of Volcanic Angrites
a.m.		Northwest Africa 12320, Northwest Africa 12004, and
		Northwest Africa 12774 and Ungrouped Achondrite Erg
		Chech 002 [#6059]
		We present the uranium isotopic composition $(^{238}U/^{235}U)$ of
		three volcanic angrites (Northwest Africa 12320, Northwest
		Africa 12004, and Northwest Africa 12774) and ungrouped
		achondrite Erg Chech 002.
10:25	Ferrière L. * Pittarello L.	The Anomalous Diogenite Northwest Africa 12973 [#6282]
a.m.	Chernonozhkin S. M. Vanhaecke F.	The origin of the vesicular lithology in the anomalous
	Goderis S.	diogenite NWA 12973 is discussed based on observations
		using a multi-method approach. LA-ICP-MS and
		geothermobarometric works are used to further constraints
		the suggested formation scenario.
10:35		Q&A
a.m.		

Thursday, August 19, 2021 DISK CONDITIONS AND PROCESSES 1:30 p.m. Williford ABC Chairs: Rachel Smith and Timo Hopp

Abstract Title and Summary Times **Authors (*Denotes Presenter)** 1:30 Hopp T. * Dauphas N. Spitzer F. Fe Isotopic Dichotomy in Iron Meteorites and the Stellar Burkhardt C. Kleine T. *Origin of Nucleosynthetic Fe Isotope Anomalies* **[#6225]** p.m. Nucleosynthetic Fe isotope anomalies in iron meteorites display a NC-CC dichotomy. These anomalies predominantly reflect variations in Iron-54 that are caused by admixture of material produced by nuclear statistical equilibrium in supernovae. 1:45 Van Camp E. R. * Bergner J. B. A Unified Model of Pebble Growth, Diffusion, and Chemistry p.m. Bosman A. Bergin E. Ciesla F. J. in Protoplanetary Disks [#6211] We present the results of a new unified protoplanetary disk model including pebble growth, diffusion, and chemistry. Our model allows us to track time evolving photochemistry and ice compositions in a self-consistent manner with gas phase chemistry. 2:00 Liszewska K. M. * Rundhaug C. J. Iron Isotopic Heterogeneity in the p.m. Hunt A. C. Schönbächler M. Protoplanetary Disk [#6175] We present high-precision data for mass-independent Fe isotope variations in eucrites, chondrites, and iron meteorites, including for ϵ^{58} Fe, to investigate the causes of Fe isotope variations in early solar system materials.

2:15	Herbst A. K. * Desch S. J.	Radial Distribution of Ca-Rich, Al-Rich Inclusions in the
p.m.	Williams C. D. Dunham E. T.	Solar Nebula [#6272]
	Mane P.	We model the launching of CAIs by magnetocentrifugal
		outflows (disk winds) from the inner disk. We find only very
		small CAIs (<1 micron) can be lofted in the disk, launched by
		the wind, and achieve sufficient velocity to reach the
		outer disk.
2:30	Zanetta PM. * Manga V. Chang Y	Multistage Non-Equilibrium Processes Recorded by a
p.m.	J. Ramprasad T. Zega T. J.	Hibonite Grain in the Northwest Africa 5028
		CR2 Chondrite [#6177]
		Hibonite in CAIs can incorporate Ti3+ and Ti4+. Our
		multiscale study reveal composition and oxidation state
		variations along the grain. Quantification of such variations
		provide information on the thermodynamic conditions of
		the early solar system.
2:45	Lodders K. * Fegley B.	The Effects of Metallicity and Total Pressure on
p.m.		Condensation Temperatures [#6135]
		We describe some effects of metallicity and total pressure
		on the condensation temperatures of the elements.
3:00	Smith R. L. * Boogert A. C. A.	Variability in Gas-Phase CO Reservoirs in Massive Young
p.m.	Blake G. A. Pontoppidan K. M.	Stellar Cores and Bindries [#6301]
		we present new results of CO variability for massive YSO
		cores and binaries. Thus far we find the most pronounced
		beteregeneity could be significant in evolving
		netenlanotary could be significant in evolving
3.15	Desch S. J. * Dunlan D. B	Statistical Chronometry: Anchors Awayl [#6231]
n m	Williams C D Torrano 7 A	We fit 1 parameters (CAI Ph-Ph ages: solar system initial
p		53 Mn 55 Mn 182 Hf 180 Hf 53 Mn half-life) and make concordant
		30 ages (Al-Mg, Mn-Cr. Hf-W, Pb-Pb) across 10 achondrites.
		CAIs formed 4568.61 \pm 0.26 Myr ago. D'Orbigny 5.05 \pm 0.03
		Myr later.
3:30	Render J. * Brennecka G. A.	Zirconium Isotopic Constraints on Early Solar System
p.m.	Burkhardt C. Kleine T.	Evolution and Planetary Building Blocks [#6233]
		We present new Zirconium isotope data on a broad set of
		meteoritic and planetary samples to shed light on early solar
		system evolution and terrestrial planet accretion.
PRE-RECO	RDED PRESENTATION	
3:45	Kodolányi J. * Hoppe P. Vollmer C.	No In Situ Evidence for 60Fe Decay in
p.m.		Primitive Meteorites [#6125]
		New in situ isotope data on primitive chondrite components
		do not support high initial ⁶⁰ Fe/ ⁵⁶ Fe ratios in the early solar
		system, unlike previous in situ data, but are consistent with
		initial 60Fe/56Fe ratios estimated from bulk samples.
3:55	Hu J. Y. * Dauphas N. Tissot F. L. H.	Heating Events in the Nascent Solar System Recorded by
p.m.	Davis A. M. Ciesla F. Yokochi R.	Rare Earth Element Isotopic Fractionation In
	Ireland T. J. Zhang Z. Davis A. M.	Refractory Inclusions [#6284]
	Ciesia F. J. Grossman L.	We measured the isotopic compositions of Ce, Nd, Sm, Eu,
	Charlier B. L. A. Roskosz M.	Gd, Dy, Er, and Yb in group II CAIs and found light isotope
	AIP E. E. HU M. Y. Zhao J.	enrichment for the most refractory REEs, suggesting the
1		CAIS formed by fast evaporation followed by near-

4:05	Q&A
p.m.	

Thursday, August 19, 2021 FIREBALLS AND SOURCES 1:30 p.m. Waldorf

Chairs: James Karner and Peter Jenniskens

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Karner J. M. * Harvey R. P.	Meteorite Search and Recovery at Davis Nunataks - Mt.
p.m.	Schutt J. S. Rougeux B.	Ward, Antarctica [#6295]
		Over 3000 meteorites have been recovered from the Davis
		Nunataks - Mt. Ward icefields in Antarctica.
1:45	Dermott S. F. * Li D. Christou A. A.	Root Sources of the Meteorites Originating from the Inner
p.m.		Asteroid Belt [#6204]
		Observational evidence is presented that the root sources of
		the meteorites originating from the inner asteroid belt were
		about 20 large asteroids.
2:00	Hewins R. H. * Zanetta PM.	Magnetite-Rich C2-ung Chondrites and Their Asteroidal
p.m.	Zanda-Hewins B. Le Guiillou C.	Parent Bodies [#6041]
	Leroux H. Brunetto R. Maupin R.	C2-ung1 chondrites are more δ^{18} O-rich and magnetite-rich
	Djouadi Z. Gattacceca J.	than CM2 chondrites. NWA 12563 magnetite cannot be
	Sognzoni C. Pont S. Piani L.	detected in the IR making a connection to asteroids difficult.
	Rigaudier T. Bernard S.	However, it resembles WIS 91600, and could be from the
	Deldicque D. Malarewicz V.	same parent body.
	Dionnet Z. Aleon-Toppani A.	
2.15	King A. Boronaics F.	The Impact and Decovery of Actoroid 2019 [#C20C]
2.15	Vin O 7	On June 2, 2018, astoroid 2018 J A was detected in space
p.m.	2018 LA Meteorite Consortium	and impacted over Botswana's Central Kalabari Game
		Reserve 8 hours later. This was only the second time that an
		asteroid was spotted in space before impacting over land
PRF-RFCO	RDED PRESENTATION	
2:30	Schmitz B. * Heck P. R.	Meteorite and Asteroid Eluxes to Earth the Past 500 Ma as
p.m.		Reconstructed from Sediment-Dispersed Chrome Spinel.
P		Fossil Meteorites and Impact-Crater Ages [#6092]
		We have performed the first reconstruction of the flux of
		meteorites to Earth through the Phanerozoic Eon. Ordinary
		chondrites have dominated the flux and most impact craters
		have likely formed from ordinary chondritic projectiles
		during this time.
2:40	Hill P. J. A. * Tunney L. D.	Application of Drone-Captured Thermal Imagery in Aiding in
p.m.	Herd C. D. K. Weber M.	the Recovery of Meteorites Within a Snow-Covered
		Strewn Field [#6118]
		This study examines the application and feasibility of
		utilizing drone-based thermal imagery to aid in the finding
		and recovery of meteorites that may have fallen in snow-
		covered terrain.

2:50	Valenzuela M. * Oliveros V.	QEMSCAN [®] as a New Tool for Classification: First Results in
p.m.	Menzies A. Pinto G. Alvarez S.	Ordinary Chondrites from Atacama Desert, Chile [#6281]
	Beltran T. Corgne A. Echaverria R.	Using a new classification technique -QEMSCAN- it was
	Revillard A. Salazar N. Soto K.	possible to reproduce the Fe^0/Fe tot and Fe^0/SiO ₂ values
		for 5 ordinary chondrites, enabling a fast classification for
		numerous samples, as is the case of Chilean meteorites
		from Atacama desert.
3:00	Sansom E. K. * Gritsevich M.	An Interactive Quick-Look Tool for Fireballs and Their
p.m.	Devillepoix H. A. R. Towner M. C.	Initial Velocities [#6199]
		We present an interactive tool for quickly determining if a
		meteorite survives atmospheric entry, including
		determining a best fit initial velocity for orbital modelling.
		Code for this tool on github can also be run online (see links
		in abstract).
3:10	Moilanen J. * Gritsevich M.	A Spatial Heat Map for the 7 November 2020 Iron
p.m.		Meteorite Fall [#6252]
		On the difference between density and mass distribution
		per surface area heat maps made from dark flight Monte
		Carlo (DFMC) simulations. Using simulations for a recent,
		but still unclassified, iron meteorite fall in Sweden as
		an example.
3:20		Q&A
p.m.		

Friday, August 20, 2021 CHONDRITES 8:30 a.m. Williford ABC Chairs: Tasha Dunn and Michael Weisberg

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
8:30	Dunn T. L. * Carpenter P. K.	Equilibration of Low-Ca Pyroxene in Petrologic Type 3
a.m.		CK Chondrites [#6107]
		Here we report compositions of high- and low-Ca pyroxene
		in seven petrologic type 3 CK chondrites and one CK
		chondrite to examine the extent of chemical equilibration
		during thermal metamorphism.
8:45	Alpert S. P. * Daly L. Ebel D. S.	Electron Backscatter Diffraction Study of Magnetite in
a.m.	Weisberg M. K. Stroud R. M.	Ordinary Chondrite Opaque Assemblages [#6179]
		Magnetite grains grow / EBSD tells of space / Condensation
		is the key.
9:00	Gray M. L. * Weisberg M. K.	H, N, and C Isotopes in Enstatite Chondrites and Accretion of
a.m.	Ebel D. S. Alexander C. M. O'D.	the Earth [#6255]
	Foustoukos D. I. Howard K. T.	In search of the solar system materials that potentially
		contributed to Earth's accretion, we evaluated H, N, and C
		isotopic compositions of E, C, and O chondrite groups and
		compared the values to Earth.

9:15 a.m. 9:30	Hugo R. C. * Ruzicka A. M. Kerraouch I. * Bischoff A.	Untangling the History of a Chondrule in Northwest Africa 5205 (LL3.2) with Electron Backscatter Diffraction and Transmission Electron Microscopy [#6258] EBSD and TEM analysis of a chondrule in the cluster chondrite NWA 5205 reveals admixtures of cool and warm deformation signatures and overprinted recovery features. These may represent two distinct events which may have affected overall lithification. A Unique Chondrite Clast in the Northwest Africa 13262 (L3
a.m.	Zolensky M. E. Pack A. Patzek M. Trieloff M.	Breccia) Bearing Similarities to Carbonaceous and Ordinary Chondrites [#6197] We report here a unique chondritic clast found in the Northwest Africa 13262 (L3 breccia) that is different from material sampled by individual meteorites. The clast bears similarities to carbonaceous and ordinary chondrites.
9:45 a.m.	Weisberg M. K. * Zolensky M. E. Kimura M. Howard K. T. Ebel D. S. Alexander C. M. O'D.	Magnetite in Matrix of Anomalous EL3 Chondrite Northwest Africa (NWA) 8785 [#6198] NWA 8785 is an anomalous EL3 with a high abundance of matrix rich in magnetite. The matrix may have been the carrier of ices, resulting in parent body alteration to form the magnetite or the magnetite formed prior to accretion and/or is primary.
PRE-RECO	RDED PRESENTATION	
10:00	Pratesi G. * Moggi Cecchi V.	Mineralogy, Petrography and Geochemistry of Cavezzo, a
a.m.	Hammond S. Di Martino M. Barghini D. Taricco C. Carbognani A. Gardiol D.	The mineralogy, petrography and geochemistry of Cavezzo, fallen on January 1st 2020 and representing the first italian meteorite detected and recovered by the Italian PRISMA Fireball Network, is provided.
10:10 a.m.	Baziotis I. * Xydous S. Papoutsa A. Hu J. Ma C. Ferrière L. Klemme S. Berndt J. Asimow P. D.	Discovery of High-Pressure Polymorphs in the Recent Fall of Viñales (L6 Ordinary Chondrite): Implications for Collisions on its Parent Body [#6115] Viñales, a L6 ordinary chondrite, is a February 2019 fall, presents a unique opportunity to recreate the shock metamorphic history of this meteorite based upon the presence of high-pressure polymorphs occurring in melt veins.
10:20 a.m.	Walton C. R. * Shorttle O. Černok A. Baziotis I. Asimow P. Ferrière L. Anand M.	Phosphorus-Olivine-Assemblages (POAs): A Paragenetic Model for P-Bearing Phases in Primitive Meteorites [#6022] P-bearing minerals are emerging as crucial tools in the study of asteroids. However, P pathways in chondrites are poorly understood. We present observations in support of a key role for olivine in the paragenesis of P-bearing phases in chondrites.
10:30 a.m.	Moreau J. * Jõeleht A. Hamann C. Stojic A. N. Plado J. Hietala S.	Synthesized Troilite Melt Migration into Ultramafic Rocks: A Study for Ordinary Chondrite Darkening by Iron Sulfide Shock Melting [#6026] We induce the migration of synthesized troilite melt into a dunite rock to reproduce optical darkening. Such experiment allow us to study more about shock darkening of ordinary chondrites from iron sulfide melt vein migration into silicate cracks.

10:40	Ma C. * Rubin A. E.	Discovery of Zolenskyite (FeCr ₂ S ₄), a New Sulfide Mineral in
a.m.		the Indarch Enstatite Chondrite [#6047]
		New mineral zolenskyite (IMA 2020-070; monoclinic
		FeCr2S4) occurs only in the Indarch matrix, likely formed
		from daubréelite on the EH parent body at high shock
		pressures during collisional events.
10:50	Dugushkina K. A. * Berzin S. V.	SiO ₂ -Rich Components in Ordinary Chondrite
a.m.	Pankrushina E. A.	Shinejinst (H4) [#6094]
	Pastukhovich A. lu. Grokhovsky V. l.	Four SiO ₂ -rich components from the Shinejinst meteorite
	Chebykin N. S. Demberel S.	were studied. SiO ₂ -phase is associated with low-Ca
		pyroxene. The FeO content of low-Ca pyroxene varies from
		2.1 wt% to 21.5 wt%. Mesostasis between Px and SiO_2 is
		represented by glass (K2O>4 wt%).
11:00		Q&A
a.m.		

Friday, August 20, 2021 ORGANICS AND ICES 8:30 a.m. Waldorf

Chairs: Rh	Chairs: Rhonda Stroud and Jennifer Bergner		
Times	Authors (*Denotes Presenter)	Abstract Title and Summary	
8:30 a.m.	Stroud R. M. * De Gregorio B. T. Alexander C. M. O'D.	<i>Ex Situ Analyses of Chemical Heterogeneity in Insoluble</i> <i>Organic Matter from Primitive Chondrites</i> [#6269] Variations in the elemental and functional chemistry of meteoritic organic matter at scales too small for XANES is revealed by STEM-EELS-EDS. Electron beam damage is not prohibitive at 60 kV operating voltage, though H groups are preferentially lost.	
8:45	Nittler L. R. * Alexander C. M. O'D.	Microscale H, C, and N Isotopic Distributions in Three	
a.m.	Verdier-Paoletti M. J.	Pristine CM Chondrites [#6063]	
		In 3 CM rocks / H, C, and N isotopes / Huge diversity.	
9:00	Bergner J. B. * Ciesla F. J.	Ice Inheritance in Dynamical Disk Models [#6173]	
a.m.		We will present a model to explore the prospects for	
		interstellar icy material to survive passage through the	
		proto-Solar disk and incorporation into icy bodies.	
PRE-RECC	RDED PRESENTATION		
9:15	Lecasble M. * Remusat L.	PAH Content of CM Chondrites: Influence of Aqueous	
a.m.	Viennet JC. Laurent B. Bernard S.	Alteration on the Parent Body? [#6205]	
		We extracted PAHs from Munkundpura, Agua Zarcas,	
		Kolang and Tarda. PAH concentration and alkylation degree	
		are driven by the extent of aqueous alteration. PAH isotope	
		signature will shed light on PAH formation mechanisms.	
9:25	Furukawa Y. * Iwasa Y.	Synthesis of ¹³ C-Enriched Amino Acids with ^{13C} -Depleted IOM	
a.m.	Chikaraishi Y.	in a Formose-Type Reaction [#6127]	
		¹³ C-enrichment is one of the representative characteristics	
		of meteorite's small organic compounds such as amino	
		acids, nucleobases, and sugars. This presentation introduces	
		an experimental demonstration of this enrichment.	

9:35	Tunney L. D. * Hill P. J. A.	Organic Compounds in the Tarda C2 Ungrouped
a.m.	Herd C. D. K. Hilts R. W. Holt M. C.	Carbonaceous Chondrite: MTBSTFA as a One-Pot
		Extraction Technique [#6116]
		In our study we employed MTBSTFA to identify organic
		compounds in the Tarda C2 ungrouped carbonaceous
		chondrite and characterize the performance of this
		derivatization technique relative to other common
		extraction methods.
9:45	Laurent B. Holin M. Beyssac O.	Experimental Alteration of Insoluble Organic Matter of the
a.m.	Brunetto R. Brunelle A. Bouvier C.	Paris Meteorite [#6202]
	Remusat L. *	The Paris IOM was subjected to aqueous alteration at 150°C.
		Molecular evolution consistent with observations in natural
		objects, but no significant H and N isotope evolution.
		Aqueous alteration cannot solely explain differences
		between IOM in CCs.
9:55	Rojas J. * Duprat J. Dartois E.	Ion-Irradiation Induced Organic Refractory Residues from
a.m.	Wu T-D. Engrand C. Augé B.	Nitrogen-Rich Ices: Clues on the Isotopic Composition of the
	Boduch Ph. Rothard H. Chabot M.	Organic Matter in UCAMMs [#6193]
	Guérin B. Mathurin J.	Ultra Carbonaceous MicroMeteorites contain high amounts
		of N-rich organic matter with extreme D/H enrichments.
		Laboratory experiments modelling the GCR on the surface
		of icy bodies are made to constrain the formation of the
		organic matter in UCAMMs.
10:05	Burgess K. D. * Stroud R. M.	Mineralogical Record of Alteration by Heavy Ices in a
a.m.	Nittler L. R. Trigo-Rodriguez J. M.	Cometary Clast in a Primitive Meteorite [#6182]
		We preformed analyses of a hypothesized cometary micro-
		xenolith identified in the Renazzo-like (CR) carbonaceous
		chondrite LaPaz icefield 02342 that contains
10.15		suitates in regions with minor aqueous alteration.
10:15	De Gregorio B. T. * Stroud R. M.	In Situ Analysis of Chemical Variations in Meteoritic Organic
d.111.		Matter for Constraining Alteration Histories [#6254]
		S rich incoluble organic matter in a CM chandrite contains
		S-rich insoluble organic matter in a CM chondrite contains
		S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and
		S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help
		S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples
10.25	Yesiltas M * Glotch T D Sava B	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples.
10:25 a.m.	Yesiltas M. * Glotch T. D. Sava B.	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples. Nanoscale Infrared Investigation of Organics in Carbonaceous Chondrites [#6097]
10:25 a.m.	Yesiltas M. * Glotch T. D. Sava B.	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples. Nanoscale Infrared Investigation of Organics in Carbonaceous Chondrites [#6097] We demonstrate the identification and petrographic context
10:25 a.m.	Yesiltas M. * Glotch T. D. Sava B.	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples. Nanoscale Infrared Investigation of Organics in Carbonaceous Chondrites [#6097] We demonstrate the identification and petrographic context of organic molecules in carbonaceous chondrites using near-
10:25 a.m.	Yesiltas M. * Glotch T. D. Sava B.	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples. Nanoscale Infrared Investigation of Organics in Carbonaceous Chondrites [#6097] We demonstrate the identification and petrographic context of organic molecules in carbonaceous chondrites using near- field infrared spectroscopy with ~20 nm spatial resolution.
10:25 a.m. 10:35	Yesiltas M. * Glotch T. D. Sava B.	S-rich insoluble organic matter in a CM chondrite contains nanoscale variations in N and O correlated with C=O and C=N functional chemistry. These observations can help unravel the complex processing history of IOM in asteroid return samples. Nanoscale Infrared Investigation of Organics in Carbonaceous Chondrites [#6097] We demonstrate the identification and petrographic context of organic molecules in carbonaceous chondrites using near- field infrared spectroscopy with ~20 nm spatial resolution. Q&A

Friday, August 20, 2021 PARENT BODY PROCESSES 1:30 p.m. Williford ABC Chairs: Michael Zolensky and Dara Laczniak

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Laczniak D. L. * Thompson M. S.	Investigating Space Weathering of Carbonaceous Asteroids
p.m.	Christoffersen R. Dukes C. A.	Through Low-Flux and High-Flux H+ and He+ Irradiation of
	Clemett S. J. Morris R. V.	the Murchison Meteorite [#6086]
	Keller L. P.	We perform low-flux and high-flux H+ and He+ irradiations
		on the Murchison meteorite to investigate the effect of ion
		flux on olivine amorphization and better understand the
		microstructural, chemical, and optical effects induced by
		solar wind.
1:45	Zolensky M. E. * Bodnar R. J.	Analysis of Fluid Inclusions in Astromaterials: Why, Where
p.m.	Dolocan A. Tsuchiyama A.	and How [#6034]
		Current situation of astromaterial fluid inclusions.
PRE-RECO	RDED PRESENTATION	
2:00	Hicks L. J. * Bridges J. C.	Alteration of Carbonate in the Aguas Zarcas and Tarda
p.m.		Carbonaceous Chondrites [#6157]
		In this study of Aguas Zarcas and Tarda carbonaceous
		chondrites, we aim to constrain the history of carbonate
		mineralisation and the evolution of the parent body fluids
		between bicarbonate-rich and siliceous.
2:10	Jenkins L. E. * Lee M. Daly L.	Post-Brecciation Chondrule Flattening and Petrofabric
p.m.	King A. J. Chung P.	Formation in CM Chondrite Kolang [#6165]
		Petrofabrics and / Flattened chondrules shared among / The
		clasts of Kolang.
2:20	Eschrig J. * Bonal L. Gattacceca J.	The Hydration History of Unequilibrated
p.m.	Beck P.	Ordinary Chondrites [#6095]
		An indepth study of the hydration of UOCs is performed to
		investigate if UOCs are hydrated or not, and if the extent of
		hydration is controlled by the thermal metamorphism as it is
		observed in LV chondrites. UULs show clear signs
2.20		or hydration.
2:30	Krietsch D. Richa M. E. L. Madon C.	Noble Cases [#6169]
p.m.	Rightor K Alexander C M O'D	We further examine the idea that tranned noble gases can
	Righter K. Alexander C. M. O.D.	be used to assess parent body processing in meteorites
		Following aqueous alteration effects in CMs and CRs, we
		now show that thermal alteration is well monitored by
		noble gases in COs.
2:40	MacPherson G. J. * Nagashima K.	CV4 Metamorphism: Oxygen Isotopes in the Northwest
p.m.	Krot A. N. Irving A. J. Pitt D.	Africa 8418 Chondrite [#6104]
'	Mallozzi L.	Oxygen isotope data confirm that NWA 8418, although
		related to CV3 chondrites, is more highly metamorphosed
		and should be considered as CV4. CAI data plot along CCAM,
		chondrule data plot along PCM.
2:50	Baliyan S. * Ray D.	Phyllosilicate Rich Rims in Mukundpura Meteorite:
p.m.		Implications for Parent Body Aqueous Alteration [#6247]
		This study focuses on the origin and alteration of fine-
		grained rims in Mukundpura meteorite (CM2).

3:00	Krämer Ruggiu L. * Devouard B.	Detection of Incipient Aqueous Alteration in
p.m.	Gattacceca J. Bonal L. Leroux H.	Carbonaceous Chondrites [#6164]
	Eschrig J. Borschneck D. King A.	We studied four ungrouped carbonaceous chondrites
	Beck P. Marrocchi Y. Debaille V.	showing minimal aqueous alteration and thermal
	Hanna R. D.	metamorphism by several techniques. We discuss the
		performances of those techniques to detect incipient
		aqueous alteration.
3:10	Azevedo-Vannson S. * Remusat L.	Origin of Hydrogen Content in Chondrules of
p.m.	Piani L. Pont S. Roskosz M.	CM Chondrites [#6151]
		Ion probe reveals high H content in NAMs of Paris, Aguas
		Zarcas and Mukundpura chondrules. D/H, H and FeO
		concentrations appear correlated. This may relate to
		preaccretionnary formation processes or aqueous alteration
		on the parent body.
3:20		Q&A
p.m.		

Friday, August 20, 2021 POTPOURRI 1:30 p.m. Waldorf Chairs: Elena Dobrică and Thomas Zega

Times	Authors (*Denotes Presenter)	Abstract Title and Summary
1:30	Zhang Z. J. * Nie N. X.	Loss and Isotopic Fractionation of Alkali Elements During
p.m.	Mendybaev R. A. Liu M-C. Hu J. Y.	Diffusion-Limited Evaporation from Molten Silicate [#6257]
	Hopp T. Alp E. E. Lavina B.	We carried out the vacuum evaporation experiments from a
	Bullock E. S. McKeegan K. D.	basaltic melt at 1200 and 1400°C in this study, and we found
	Dauphas N.	chemical and isotopic zoning profile of residues from 1400°C
		runs, which is attributed to diffusion-limited transport
		within the molten droplet.
1:45	Dobrică E. * Ohtaki K. K. Engrand C.	The Occurrence of Complex Microstructures and Zonations in
p.m.		Carbonates from a Hydrated Fine-Grained
		Antarctic Micrometeorite [#6076]
		Our TEM study of carbonates from a hydrated fine-grained
		Antarctic micrometeorite shows that these phases could
		result from rapid growth occurring from isolated reservoirs
		of fluid with a highly variable composition.
2:00	Patzer A. Bullock E. S.	The Non-Complementary Compositions of Chondrules and
p.m.	Alexander C. M. O'D. *	Matrices in CO, CM and CR Chondrites [#6025]
		Our results are inconsistent with chondrule-matrix
		complementarity but in line with the four-component
		model of Alexander (2019) combined with the addition or
		loss of individual components like forsterite, refractory
		inclusions and FeS or FeNiS.
PRE-RECO	RDED PRESENTATION	
2:15	Bekaert D. V. * Auro M.	Vanadium Isotope Constraints on the Solar Irradiation
p.m.	Shollenberger Q. R. Liu M-C.	History of CV CAIs [#6259]
	Marschall H. Burton K. Jacobsen B.	CAIs record the history of our solar system before any of the
	Brennecka G. A. McPherson G. J.	planets formed. Here, we use V and Sr isotopic data for six
	vonMutius R. Sarafian A.	CAIs from Allende chondrite to suggest that CAI formation
	Nielsen S. G.	took place further away from the protoSun than
		previously thought.

2:25	Leya I. * Hirtz J. David JC.	The Next Generation of Model Calculations for Cosmogenic
p.m.		Production Rates in Planetary Objects [#6051]
		We present a new version of model calculations for
		cosmogenic production rates in planetary objects. The
		model is based on the latest improvements in terms of
		nuclear physics modelling and fully considers recent
		changes and adjustments of AMS standards and half-lives.
2:35	Floyd C. J. * Lee M. R.	Chondrule Size Variation Within CM
p.m.		Chondrite Lithologies [#6091]
		We find significant chondrule size variations between four
		CM carbonaceous chondrites and the clasts within using
		BSE/EDS mosaics and XCT analysis.
2:45	Van Maldeghem F. * Soens B.	Oxygen Isotope Variability Among Unmelted
p.m.	Kaufmann F. E. D. Van Ginneken M.	Micrometeorites from the Sør Rondane Mountains,
	Hecht L. Claeys Ph. Goderis S.	East Antarctica [#6168]
		Triple-oxygen isotope data from 55 unmelted
		micrometeorites from the Sør Rondane Mountains is used
		to identify the parent bodies of extraterrestrial material and
		suggests these particles are more susceptible for alteration
		than previously thought.
2:55	Nguyen A. N. * Nakamura-	Bulk Oxygen Isotopic Compositions of Anhydrous
p.m.	Messenger K. Keller L. P. Klock W.	Interplanetary Dust Particles: Indication of an ¹⁶⁰ -Poor
		Reservoir in the Outer Solar System [#6304]
		We report an unusually ¹⁶ O-poor bulk composition in an
		anhydrous IDP, and two IDPs with bulk ¹⁷ 6049-rich
		compositions that are offset from the CCAM line.
3:05		Q&A
p.m.		

Workshop on "Meteorite Ownership and Legal Issues"

Saturday morning, August 21, 2021, ~8:30–12:00, Field Museum of Natural History, Founders Room.

E-POSTERS AND ABSTRACTS

Authors (*Denotes Presenter)	Abstract Title and Summary
Mitchell J. T. Stephen N. R. Tomkins A. G.	Sampling an Impact Melt Sheet with Unusual Diogenite Northwest
	Africa 5480 [#6008]
	EBSD analysis of NWA 5480 reveals a distinct lack of preferred
	orientation and an unusual poikilitic texture, likely produced
	through mineral settling and mixing processes in a thick impact
	melt sheet.
Liao S. Y. Tang C. P. Wang Y. Jiang Y.	Genesis of Quartz and Tridymite in Eucrites [#6039]
Li Y. Chen J. Y.	We studied the petrography and mineral chemistry of quartz and
	tridymite, the two major polymorphs of silica in basaltic eucrites,
	aiming to investigate the effect of shock reheating on the
	formation of quartz and tridymite.
Cloutis E. A. Connell S. A.	Spectral Reflectance Properties of Mesosiderites [#6048]
	Reflectance spectroscopy of mesosiderites can be used to identify
	possible asetroidal parent bodies. Their reflectance spectra are
	strongly affected by physical properties but mafic silicate
	absorption bands are pervasive.

Li Y. Hsu W. Wu Y.	Carbon Isotopic Composition of Haxonite in Aletai (IIIE-
	δ^{13} C value of Aletai bayonite (-15.2 + 1.2%-) is significantly lighter
	than that in IIIF Colonia Obrera. This suggests that Aletai either
	experienced a different differentiation process or had a unique
	origin other than that of the other IIIF irons
Jiang Y. Li Y. Liu J. Wang O. Oin L.	Incipient Melting and Differentiation of the CR Chondrite
Liao S. Hsu W.	Parent Body [#6062]
	Based on mineralogical, petrological and geochemical
	observations in our work, a close affinity among North West
	Africa (NWA) 12869, 3250, 11112 and Tafassasset can be
	established, and are probably closely related to CR
	carbonaceous chondrites.
Teplyakova S. N. Lorenz C. A.	Fine-Grained Metal in Sierra Gorda 054 (L4 Chondrite) [#6073]
Ivanova M. A. Kononkova N. N.	Three types of fine-grained metal were found in Sierra Gorda 054
	(L4). Some of them contain tetrataenite-taenite-kamacite melt
	pockets with cellular texture and rare grains of metal copper of
	(1–0.5 μm) are unusually enriched in Au, Pd and Sn.
Mei A. Wang Y. Hsu W. Liao S.	Chronology and Petrogenesis of the Northwest Africa
	11005 Mesosiderite [#6139]
	To unravel the formation history of mesosiderites, we carried out
	In situ U-Pb dating on zircon and Ca-phosphate grains in
	and discuss the implications for the petrogenesis of it
Mikouchi T., Takanouchi A., Aha D.	And discuss the implications for the periogenesis of it.
Vamaguchi A Irving A I	Northwest Africa 6077 Northwest Africa 6962 and Northwest
	Africa 13446 [#6147]
	We studied olivine petrofabrics of three ungrouped olivine-rich
	achondrites (NWA 6077, NWA 6962 and NWA 13446) using EBSD
	and found NWA 6077 olivine showed b axis concentration
	possibly caused by deformation in the parent body.
Takenouchi A. Sumino H. Yamaguchi A.	Noble Gas Chronology of Erg Chech 002
Barrat J. A.	Ungrouped Achondrite [#6162]
	We conducted Ar-Ar analyses of recently found andesitic
	achondrite Erg Chech 002. The Ar-Ar age of Erg Chech 002 is 4.51
	\pm 0.04 Ga, which is consistent with its rapid cooling texture and
	silica occurrences.
Irving A. J. Carpenter P. K. Ziegler K.	Ungrouped Ultramafic Achondrites Northwest Africa 13921 and
	Northwest Africa 13955: Olivine-Bearing Igneous Rocks Unlike
	Eucrites or Diogenites Derived from Unknown Differentiated
	Two now unground ignoous achondrites from Northwest Africa
	differ from typical eucrites and diogenites in mineralogy and
	oxygen isotopic composition
Brusnitsyna E. V. Muftakhetdinova R. F	The Heating Influence on the Cloudy Zone Structure in the
Yakovlev G. A. Zvonarev S. V.	Seymchan Meteorite (PMG) [#6223]
	We studied the heating influence on the cloudy zone structure in
	the Seymchan meteorite (PMG).

Carpenter P. K. Irving A. J. Ziegler K. Pravdivtseva O. Meshik A.	Chromite and Plagioclase Exsolution from Pigeonite in Anomalous Pyroxene-Phyric Eucrite Northwest Africa 13355: Implications for High Temperature/Pressure Crystallization on One of the Many Eucrite Parent Bodies [#6228] Ungrouped unbrecciated eucrite NWA 13355 contains exsolved pyroxene phenocrysts (or cognate xenocrysts) of possible high temperature and pressure origin, and may be a sample from a unique parent body. Xenon Isotopic Composition in Pyroxene from the Steinbach IVA- an Meteorite [#6246]
	supports complex crystallization history of the IVA parent body.
Sawicki J. A. Ebranimi C.	Depth Profiling of Iron Species in Sooke #1 Meteorite withMössbauer Spectroscopy [#6305]Mössbauer spectra of samples from various depths in Sooke #1were measured, see also #6005 abstract. Observed changes inmagnetite and silicates are discussed in view of aerodynamicheating during entry.
AL Omran N. Mardon A. A. Johnson P. A. Johnson J.	Detection of the Biohazards of Living Martian Organisms [#6012] We analyzed the approach taken to detect the biohazards of potential living martian organisms returned from Mars. The draft protocol for detecting biohazards in martian samples was evaluated, and recommendations were made for an updated protocol.
Goryunov M. V. Oshtrakh M. I.	<i>Re-Examination of the Isheyevo Mössbauer Spectra</i> [#6070] Verification of previously measured Mössbauer spectra of Isheyevo CH/CBb external and internal parts was carried out and revealed new results concerning the phase composition of meteorite.
Patzek M. Bischoff A. Ludwig T. Whitehouse M. Trieloff M. Visser R. John T.	O-Isotope Signatures of Olivine and Pyroxene Grains in C1 and CM-Like Clasts [#6096] The olivine and pyroxene grains in C1 clasts seem to span a wider range than the mineralogically similar CI chondrites. O-isotope data of grains in CM-like clasts overlap with those of AMMs possibly indicating a common heritage.
Yesiltas M. Kebukawa Y. Zolensky M. E. Fries M. Glotch T. D.	Spectroscopic Investigation of Ungrouped Carbonaceous Chondrites [#6098] We present detailed spectroscopic and imaging data on multiple C2-ung chondrites and compare them with various members of well-established C chondrite groups.
Dutta A. Raychaudhuri D. Mishra M. Ram R. Bhattacharya A.	Geochemical Characterization of Mukundpura Carbonaceous Chondrite (CM2): Insights into Planetary Processes [#6106] Partitioning of different trace elements and REEs among the various silicate phases, in particular olivine and its mesostasis component, matrices may be very sensitive to nebular processes.
Imai Y. Fagan T. J.	Deformation in CV Chondrites: Ductile in Leoville, Brittle in Vigarano [#6166] A clastic zone in Vigarano is a fault breccia that resulted from brittle deformation, contrasting with ductile chondrule flattening in Leoville. A setting near the parent body surface is inferred for Vigarano and an interior setting for Leoville.

Righter K. Alexander C. Foustoukos D.	Pairing Relations Within CO3 Chondrites Recovered at the
Mertens C. A. K. Busemann H. Schutt J.	Dominion Range and Miller Range,
	Transantarctic Mountains [#6191]
	We present new data that allow a better understanding of pairing
	relations in two large CO3 chondrite groups from Antarctica.
Lunning N. G. Harrington R.	Mass Consumed Associated with Carbonaceous Chondrite Thin
Satterwhite C. Righter K. Corrigan C.	Section Making: Experience from the U.S. Antarctic
	Meteorite Collection [#6195]
	We identified Antarctic CM, CO, CR, and CV chondrite chips
	(subsplits) that have been fully subdivided to make thin/thick
	sections, and calculated the average mass of material consumed
	to make sections of these carbonaceous chondrites.
Irving A. J. Garvie L. A. J. Carpenter P. K.	Newly Recognized Classes of Type 3 Carbonaceous Chondrites with
Ziegler K.	Extreme Oxygen Isotopic Compositions Beyond the
	CCAM Trend [#6218]
	Three new types of ungrouped carbonaceous chondrite from
	Northwest Africa have oxygen isotopic compositions which plot
	below the CCAM trend, and therefore must derive from
	previously unrecognized parent bodies.
Efimov A. V. Murtazov A. K. Zhabin V. S.	Visual Spectrum of Ordinary Chondrite H5 Sierra
	Gorda 008 [#6002]
	The meteorite Sierra Gorda 008 was found in the Chile's Atacama
	Desert, Antofagasta province in 2018. It was classified as an
	ordinary chondrite H5. We measured the scattering visual
	spectrum of the Sierra Gorda 008.
Szurgot M. A.	Mean Atomic Weight, Grain Density, and Porosity of Flensburg
	Unique Carbonaceous Condrite [#6006]
	Mean atomic weight (Amean), grain density (dgr) and porosity of
	Flensburg unique carbonaceous chondrite were determined. It
	was shown that Flensburg Amean and dgr values are comparable
	with those established for Murchison CM2 chondrite.
Szurgot M. A.	Mean Atomic Weight, Grain Density, and Porosity of
	Cavezzo Chondrite [#6009]
	Mean atomic weight (Amean), grain density (dgr), and porosity (P)
	of anomaleous Cavezzo L5 chondrite were predicted. It was
	shown that Cavezzo whole rock Amean, dgr, and P values are
	smaller than those established for other L chondrites falls.
Voropaev S. A. Eliseev A. A.	Experimental Study of L3 Aba Panu Meteorite's Degassing [#6031]
Dushenko N. V. Fedulov V. S.	Experimental L3 Aba Panu degassing is explored by heating. Time
	dynamics of the main active volatiles (H_2O , CO_2 , H_2 etc.) is
	analysed by the gas chromatography. Metosomatism of
	meteorites minerals is checked by means of the
	Raman spectroscopy.
Maksimova A. A. Petrova E. V.	The Fusion Crust from Ozerki L6 and Kemer L4 Studied by X-Ray
Chukin A. V. Felner I. Oshtrakh M. I.	Diffraction, Magnetization Measurements and
	Mössbauer Spectroscopy [#6068]
	Here we compare results of fusion crust taken from Ozerki L6 and
	Kemer L4 ordinary chondrites obtained by X-ray diffraction,
	magnetization measurements and Mössbauer spectroscopy.

Goryunov M. V. Petrova E. V.	Tsarev L5: Re-Fitting of the Extracted Metal Grains
	New examination of the previously measured Mössbauer
	spectrum of the metal grains from Tsarey 15 have been done with
	better quality and revealed new results
Panda D. K., Shukla A. D.	Raman Spectroscopy of Freshy Fallen Mahadeya
	(H5/6) Chondrite [#6156]
	Study of a new chondrite meteorites always shades some insights
	on the understanding of the records of physical and chemical
	processes during the early phases of the formation of the
	Solar System.
Devillepoix H. A. R. Anderson S.	Madura Cave: A New Meteorite Fall Delivered from an
Sansom E. K. Lagain A. Towner M. C.	Aten Orbit [#6189]
Bland P. A. Howie R. M. Cupak M.	This work presents initial insights from the Madura Cave
Benedix G. K. Forman L. V. Shober P.	meteorite, the latest recovery from the Desert Fireball Network.
Hartig B. A. D.	
Towner M. C. Sansom E. K.	Arpu Kuilpu, an Ordinary Chondrite on a Jupiter Family
Devillepoix H. A. R. Cupak M. Bland P. A.	Cometary Orbit [#6206]
Anderson S. L. Shober P. M.	HE chandrite recovery and classification of Arpu Kulipu, and
	in Southern Australia. Of note is that this chondrite had an orbit
	that would be classed as a lupiter family comet
Kuehner S. M., Irving A. J., Buckland N. H.	Analysis and Imaging of Original Thin Sections Made Around 1878
Bandli M. Mani P. C.	by Otto Hahn Establish Knyahinya to be an L4 Chondrite [#6224]
	Analyses of 19th Century thin sections of the ordinary chondrite
	fall Knyahinya support revision of its classification.
Sukhanova K. Skublov S. Li QL. Li XH.	Oxygen Isotopes Ratios in Olivine of Porphyritic Chondrules
	from EOC [#6292]
	Oxygen isotope ratios in olivine from Saratov L4, Elenovka L5 and
	Buschhof L6 meteorites were measured with a SIMS method. All
	three studied meteorites show a very different distribution of the
	oxygen three-isotope ratios.
Shormkov S. I. Yakovlev O. I.	Chondrule Melts of the Saratov Chondrite [#6077]
	We compared the results of an experimental study of evanoration
	of alkalis from the pyroxene chondrules of the Saratov chondrite
	with those calculated for the case of evaporation of the K2O-
	Na2O–SiO ₂ melts.
Salazar N. A. Valenzuela M. Oliveros V.	Characterization of Five Ordinary Chondrites of the Atacama
Menzies A.	Desert Using QEMSCAN [®] and Other Techniques [#6299]
	The petrological and chemical classification of five ordinary
	chondrites (OC) from the Atacama desert was obtained using
	automated mineralogy (Qemscan) along with classical techniques.
	Qemscan would provide accurate and fast classification of OCs.
Johnson J. C. Johnson P. A. Mardon A. A.	Was the Red Planet once Blue? Meteoritic Evidence for
	Historical Biosignatures [#6003]
	the chondritic meteorites Allan Hills 77005 (ALH77005) and 84001
	(ALH8/1001) martian meteorites discovered in Antarctica, Horo
	we try to chronicle this evidence are elegantly
	we dry to enrolled this evidence of e eleganity.

Konovalova K. A. Plechov P. Yu.	Ruthenium-Dominated Phases in the Heterogeneous Refractory
Litasov K. D. Shcherbakov V. D.	Metal Nuggets in Calcium-Aluminium Inclusions in the CV3R
	Chondrite Northwest Africa 12590 [#6152]
	The abstract presents the results of studying crystal structures by
	EBSD and chemical composition by SEM for refractory metal
	nuggets in Ca-A-inclusions in CV3R Northwest Africa 12590.
Meshik A. Pravdivtseva O.	Xenon Isotopes in Solar Wind, Comet 67P/C-G, and Jupiter: A Step
	Toward the Understanding of Their Relationship [#6279]
	Renormalized xenon composition of Jovian atmosphere and
	comet 67P/C-G suggests the presence of fission xenon in the Sun
	and Jupiter.
Martínez M. J. Marco F. J.	A 10th Century Ball of Fire over Spain [#6055]
	A 10th century fireball seen in several Spanish villages caused
	damages and it was recorded in several chronicles. Although
	different interpretations exist, the description of the
	phenomenon may correspond to a bolid whose path can
	be reconstructed.
Kalabanov S. A. Korotishkin D. V.	New Software and Hardware Platform for Meteor Radar
Ishmuratov R. A. Valiullin F.	Observation in Kazan (Russia) [#6017]
Sherstykov O. N.	The Kazan Meteor Radar (KMR) is a new generation system
	deployed on the scientific research area of Kazan Federal
	University, Tatarstan, Russia (55 N) in March 2015. KMR transmits
	15kW power in pulse and uses single antenna all
	sky configuration.
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146]
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and
Patzek M. Ruesch O.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types.
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146]We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types.FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184]
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146]We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types.FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.).
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and Thermal Effects [#6192]
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and Thermal Effects [#6192] The formation of cloudy zone resulted from the unique space
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). <i>The Cloudy Zone Structure as an Indicator of Shock and</i> <i>Thermal Effects</i> [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). <i>The Cloudy Zone Structure as an Indicator of Shock and</i> <i>Thermal Effects</i> [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). <i>The Cloudy Zone Structure as an Indicator of Shock and</i> <i>Thermal Effects</i> [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat.
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I. Muftakhetdinova R. F. Grokhovsky V. I.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). <i>The Cloudy Zone Structure as an Indicator of Shock and</i> <i>Thermal Effects</i> [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat. <i>Structural Features of Se?mchan Pallasite After Shock-</i> <i>Ways Londing</i> [#6202]
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I. Muftakhetdinova R. F. Grokhovsky V. I. Minin M. G.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and Thermal Effects [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat. Structural Features of Se?mchan Pallasite After Shock- Wave Loading [#6203] This maper presents the results of a study of the structure.
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I. Muftakhetdinova R. F. Grokhovsky V. I. Minin M. G.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and Thermal Effects [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat. Structural Features of Se?mchan Pallasite After Shock- Wave Loading [#6203] This paper presents the results of a study of the structural features of the pallecite part of the Sourcehan meteor is a first
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I. Muftakhetdinova R. F. Grokhovsky V. I. Minin M. G.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. FTIR Studies of Planetary Materials: The Impact of Temperature and Vacuum on Spectral Features [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). The Cloudy Zone Structure as an Indicator of Shock and Thermal Effects [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat. Structural Features of Se?mchan Pallasite After Shock- Wave Loading [#6203] This paper presents the results of a study of the structural features of the pallasite part of the Seymchan meteor-ite after experimental impacts by enhoring the experiments in a study of the structural features of the pallasite part of the Seymchan meteor-ite after
Patzek M. Ruesch O. Morlok A. Reitze M. P. Weber I. Stojic A. N. Bauch K. E. Wohlfarth K. Wöhler C. Hiesinger H. Helbert J. Muftakhetdinova R. F. Yakovlev G. A. Brusnitsyna E. V. Grokhovsky V. I. Muftakhetdinova R. F. Grokhovsky V. I. Minin M. G.	Simulating the Effects of Thermal Fatigue on the Formation of Regolith in a Thermal Vacuum Chamber [#6146] We setup an experimental chamber to simulate the effect of diurnal temperatures excursions on the surface of planetary bodies under vacuum conditions to study the crack formation and location within a range of different meteorite types. <i>FTIR Studies of Planetary Materials: The Impact of Temperature</i> <i>and Vacuum on Spectral Features</i> [#6184] We present results of mid-infrared reflectance spectroscopy forsterite, enstatite, labradorite, heated under vacuum to temperatures up to 400°C. The results are for the comparison with spectra from planetary surfaces (e.g. Moon, Mercury.). <i>The Cloudy Zone Structure as an Indicator of Shock and</i> <i>Thermal Effects</i> [#6192] The formation of cloudy zone resulted from the unique space conditions. In the presence or absence of this structure, one can draw conclusions about the reaching of certain temperatures. The cloudy zone could serve as an indicator of shock and heat. <i>Structural Features of Se?mchan Pallasite After Shock-</i> <i>Wave Loading</i> [#6203] This paper presents the results of a study of the structural features of the pallasite part of the Seymchan meteor-ite after experimental impacts by spherically converging shock waves. The results of negolidentation of knows and heat size.

Begunova A. S. Kamalov R. V.	Synchesis of Carbon Nanotubes on the Chinga Meteorite [#6248]
Yakovlev G. A. Grokhovsky V. I.	We synthesized carbon nanotibes (CNTs) using the duplex plessite
	part of the Chinga ataxite. The method of the synthesis was a
	catalytic pyrolisis of ethanol. Temperature of synthesis was
	600 °C.
Schmidt G.	Iron Meteoritic Platinum Group Element Abundance Pattern in
	Chicxulub Impact Crater Sediments from a Drill Core on the
	Yucatán Peninsula in Mexico [#6004]
	The non-chondritic PGE abundance pattern in sediments
	recovered on the Chicxulub peak ring is consistent with an
	Mundrabilla like iron projectile and is distinctly different from the
	near-chondritic PGE ratios determined in European K-Pg sites.
Vondrak D. Kavkova R. Chattova B.	Effect of the Tunguska Event on the Lake Ecosystems: A Case
Golias V. Takac M. Svecova E. Storc R.	Study of Suzdalevo Lake [#6023]
Kletetschka G.	Here we present new data on the Tunguska impact in 1908. The
	event caused not only a destructive forest damage (2,000 km2)
	and severe fires, but it also affected lake ecosystems. We
	documented these impact-related changes using lake sediments.
Sahoui R. Belhai D.	Two Shock Stages at the 6 km Diameter Tin Bider Impact
	Crater, Algeria [#6035]
	Two shock stages are detected at Tin Bider impact carter: a high
	shock stage identified on the albian sandstones of the central pick
	while the low shock stage is identified on Breccias 1.
Echaurren J. C.	Jezero Crater, Mars: Estimating the Impact Conditions [#6082]
	In this work, the conditions of the Jezero impact crater are
	estimated, providing numerical results.
Ucar H. Kletetschka G. Mizera J.	Investigation of the Glassy Objects from ODP Leg 175,
	Hole 1082C [#6120]
	The formation of the Australasian tektites corresponds to prior to
	the M/B transition. Here we investigated the glassy objects found
	in a previous study in the marine sediment from the South
	Atlantic that is outside of the Australasian strewnfield.
Vinnikov V. V. Gritsevich M. I.	A Pre-Entry Shape Estimation for Puerto Lápice and Villalbeto de
Pshehotskaya E. A.	la Peña Meteorites via Statistical Distribution of
	Fragment Masses [#6230]
	We present the meteorite shape estimation approach based on
	the statistical mass distributions of the recovered fragments. The
	power law with exponential cutoff is fitted to the empirical
	fragment distribution function to obtain the scaling index.
Unsalan O. Kruglikov N. A. Yesilyaprak C.	Analysis of the Bright Fireball Over Turkey on May
Pastunovich A. Y. Unsalan C. A. Goodall J.	27, 2020 [#6264]
rakoviev G. A. Satir U. Groknovsky V. I.	A pright hreball observed in Turkey was analyzed and meteorites
Uysai I. Erdogan I. Y. Cakmak I. Cubuk A.	were searched. Videos from Turkish universities helped
Sengun IVI. I. IVIICKaellan A. IVI.	uncuneration of the strewniferd. Bad terrain led to four
	further compaigns. A recent dam prevents a
Klatatschka C. Klake želk I. Kastalastri I.	Crowity Acports Suggest that Icidia Paris is Buried Valars - [#6020]
NELEISCHKA G. NOKOCHIK J. KOSTEIECKY J. Rozdák A	While Isidis is a tonographical low: it displays the gravity signature
DELUEK A.	consistent with a volcanic structure

Kletetschka G. Klokočník J. Kostelecký J. Bezděk A.	Gravity Aspect Reveals more Differentiated Southern Hemisphere that Northern Hemisphere of Mars [#6021] Larger density contrast is consistent with the northern hemisphere being less differentiated, with contrasting densities, than the southern hemisphere with more uniform densities.
Wu Y. Xiao Z. Hsu W.	Composition of Phosphates in the Martian Shergottite Northwest Africa 13581 [#6050] Apatite and merrillite in the shergottite Northwest Africa 13581 often coexist with uneven boundaries. Apatite are relatively F-rich and exclusively OH-poor. The parent melt may have exsolved Cl- rich melts that are subsequently migrating outward.
Glukhov M. S. Chetverikov Yu. O. Ivankova E. M. Yakubovich O. V. Goryunova A. A.	Morphology and Composition of Magnetic Microspherules from the Snows of Antarctica [#6105] Magnetic microspherules sampled from the Antarctic snows at Vostok station are type I micrometeorites. All of them have a spherical shape, dendrite and mosaic microtexture of the surface of magnetite and chromite composition.
Kochemasov G. G.	Lunar Degassing and Basalt Effusions [#6015] Some lunatics consider basalts effusions and impacts as main source of volatiles in the lunar crust. However, slow warping Moon in course of its movement in elliptical with alternating accelerations obit is a main reason of volatile involvement.
Kochemasov G. G.	Regular Lunar Tectonics [#6016] Most lunatics consider giant lunar craters as impacts. However, their regular distribution, in geomorphologic lines shows that a wave process participates in their origin. In the map there are such lines with alternating ups and downs in relief.
Demidova S. I. Tetroeva S. A. Ryazantsev K. M.	Thermal History of the Evolved Rock Clast from Luna-24 Soil Samples as Recorded in Silica Polymorphs [#6294] Recently found clast of evolved rock in impact melt breccia fragment of Luna-24 samples contains two silica polymorphs. Their identification along with study of their textural characteristics clarify thermal history of the rock fragment.
Lehnert K. A. Hezel D. Ji P. Mays J. Profeta L. Song L. Morrison S. Figueroa J. D. Johansson A.	Open and Reusable Data for Astromaterials Samples [#6291] This presentation provides an overview and update of the Astromaterials Data System that offers a comprehensive suite of systems and services for open and reusable laboratory analytical data of samples returned from space missions and for meteorites.
Peltoniemi J. Gritsevich M. Moilanen J. Mitev V. Roulet JC. Millinger M.	In-Orbit Coincident Lasersheet Particle Monitor [#6188] We propose a new concept for in situ detection of interplanetary dust particles, meteoroids, and space debris by combining the laser sheet technique with an additional fast single-pixel photodetector to precisely monitor the timestamp of each event.
Malbeuf J. T. Kabir-Bahk C. Ali S. Mardon A. A.	Meteoric Jewelry in Egypt Shedding Light on the Sophistication of Prehistoric Mankind [#6302] The only metal known to prehistoric Eqyptians was the iron that could be found in meteorites, which they used for jewelry and ceremonial purposes.
Vidmachenko A. P. Zhilyaev B. E. Steklov A. F. Petukhov V. N. Reshetnyk V. N. Verlyuk I. A. Pokhvala S. M.	The Physics of Space Intrusions. Colorimetry of Meteors [#6038] For colorimetric analysis an image of Leonid-6230 meteor was used, obtained by Mike Hankey in 2012. It allows to determine ??? temperature, chemical composition and other characteristics.

Ohtaki K. K. Ishii H. A. Bradley J. P.	Iron Oxidation State Distributions in Space-Weathered Pyroxene
Davis J. J. G. Ciston J. Bustillo K.	and Olivine [#6117]
Walroth R. Ruiz R. C. Kroll T. Sokaras D.	Laser irradiated pyroxene and olivine crystals were analyzed by
	EDS and EELS. EELS maps show a variation of Fe oxidation states
	in the irradiated amorphous layer.
Willcocks F. Grimes S. T. Stephen N. R.	Comparative Planetology of the Inner Solar System; Using Flood
	Basalts on the Moon (Lunar Maria), Mars (Tharsis and Elysium)
	and Earth to Investigate the Magmatic Evolution of Our
	Solar System [#6061]
	A new study focusing on the geochemical and petrological
	observations of meteorites on the Moon and Mars, and their
	comparison to terrestrial analogs, such as basalts from Hawaii,
	New Mexico, Northern Ireland and terrestrial flood
	basalts provinces.
Visuri J. J. Gritsevich M. I.	Introducing the FireOwl — Data Processing Software of the Finnish
	Fireball Network [#6093]
	We introduce the new FireOwl software developed and used by
	the Finnish Fireball Network. It includes kernels for image
	calibration, fireball measurements, visible flight triangulations,
	dark flight trajectory, and solar system orbit calculation.
Bonato E. Schwinger S. Maturilli A.	A New Facility for the Planetary Science Community: The
Helbert J.	Planetary Sample Analysis Laboratory (SAL) at DLR [#6103]
	The Planetarey Sample Analysis Laboratory (SAL) is a new facility
	being set up within the Institute of Planetary Research at DLR
	Berlin. SAL is being developed in preparation to receive samples
	from sample return missions for microanalysis.
Anderson S. L. Towner M. C. Bland P. A.	Search and Recover: An Update of Semi-Automated Meteorite
	Recovery with Drones and Machine Learning [#6155]
	We provide an update for our machine learning and drone-based
	meteorite recovery framework.
Moilanen J. Gritsevich M.	From Atmospheric Entry to Termination or a Strewn Field:
	Modelling Fireball Events as a Suite of
	Individual Trajectories [#6288]
	The dark flight Monte Carlo model (DFMC) provides an adequate
	representation of the processes occurring during the luminous
	trajectory coupled together with dark flight. This model has
	already assisted in several meteorite recoveries.

Wednesday, August 11, 2021 VIRTUAL POSTER SESSION A

8:30 a.m.	
Authors (*Denotes Presenter)	Abstract Title and Summary
Ipatov S. I.	Delivery of Bodies to the Earth and the Moon from the Zone of the
	Outer Asteroid Belt [#6040]
	The probability of a collision with the Earth of a body with semi-
	major axis between 3 and 4 AU could be greater than that for
	greater semi-major axes. The zone of the outer asteroid belt could
	be one of the sources of the late heavy bombardment.

Ipatov S. I.	Delivery of Icy Planetesimals to Inner Planets in the Proxima
	Centauri System [#6042]
	A lot of icy material (more than to the Earth) could be delivered to
	the inner exoplanets b and in the Proxima Centauri planetary
	system. A cometary cloud similar to the Oort cloud can exist in
	this system.
Johnson P. A. Johnson J. C. Mardon A.	Near-Earth Objects Impact Hazard Assessment Scales [#6001]
	We describe the strengths and limitations of the Torino Scale and
	Palermo Technical Impact Hazard Scale for impact hazard
	assessment and future avenues for impact hazard modelling.
Kuznetsov E. D.	Orbital Evolution of Phaethon Cluster [#6100]
	The age of the pair (3200) Phaethon – (155140) 2005 UD is more
	than 1 Myr. The age of the pair (3200) Phaethon – (225416) 1999
	YC exceeds 100 kyr. The age of the pair (155140) 2005 UD –
	(225416) 1999 YC may be 50 kyr or more.
Kuznetsov E. D. Vasileva M. A.	Some Examples of Close Asteroid pairs Interactions
Rosaev A. E. Plavalova E.	with Resonances [#6170]
	Encounters with Mars have the strongest effect on the orbital
	evolution of pairs (9068) 1993 OD – (455327) 2002 OP28 and
	(88666) 2001 RP79 – (501710) 2014 UY23, moving in the vicinity
	of the 10–7S–3J three-body resonance with Saturn and Jupiter.
Ohnishi I. Kadoi M. Shibata M.	Preparation of TEM Specimens for Olivine with Specific Crystal
	Orientations from the Matrix in Allende CV3 Chondrite Using FIB-
	SEM and EBSD [#6053]
	We prepared the TEM specimens from the randomly oriented
	oliving grains in the Allende matrix by a method combined with
	EIB (Focused Ion Ream) and EBSD (Electron Back Scattered
	Diffraction) Here we report do tails of the procedure and
	ite regulte
Brupo A	An Archivel and Oral Hictory of the Tunguska Evalosion [#6170]
Bruno A.	An Archival and Oral History of the Tunguska Explosion [#61/8]
	This poster presentation will describe the research and results of
	a book project by a professional historian on the history of
	investigations into the Tunguska explosion of 1908 in Siberia.
Kling A. M. Benner M. C. Thompson M. S.	The Search for Water in Lunar Soils Through Coordinated Analysis
Greer J. Diaz R. E. Heck P. R.	of Space Weathering Characteristics in an Apollo
	17 Sample [#6241]
	Hollow nanophase iron particles were identified in a vesicle-rich
	region of the space weathered rim in a mature lunar mare grain.
	Coordinated analyses may shed light on the relationship between
	vesicles, water, and the hollow nanoparticles.
Krämer Ruggiu L. Beck P. Gattacceca J.	Visible-Infrared Spectroscopy of Ungrouped and Rare Meteorites
Eschrig J.	Brings Further Constraints on Meteorite-
	Asteroid Connections [#6160]
	We studied 25 ungrouped chondrites and rare meteorite groups
	using VIS-NIR reflectance spectroscopy and compared their
	spectra to end-members spectra of asteroids taxonomy to find
	potential link of ungrouped meteorites to their parent bodies.

Kampf C. E. Hamann C. Schäffer S. Heunoske D. Hasse T. Hecht L. Greshake A. Osterholz J. Hill P. J. A. Chevalier M. Herd C. D. K. Hilts R. W.	Laser-Irradiation of an Ordinary Chondrite: Simulation of Atmospheric Entry of Chondritic Materials and Links to the Formation of Micrometeorites [#6256] Here we compare petrography and microchemistry of quenched melts produced from an ordinary chondrite in a 1-bar laser- irradiation experiment to recently described urban micrometeorites and fusion crusts developed around ordinary chondrites. Advancing the Curation of Aldehydes and Ketones for Applications to Carbonaceous Chondrite Curation and Cometary Nucleus Sample Return [#6119] The aim of this study is to examine the reactivity of carbonyl compounds under a variety of conditions to provide insight into the curation and handling requirements of organic- rich estimated and the study is to examine the reactive of the study is to the study is to examine the reactive of the study is to the curation and handling requirements of organic-
Nissinen M. Gritsevich M. Oksanen A. Suomela J.	Modeling of Cometary Dust Trails [#6010] We present the 'Dust Trail kit' model describing the evolution of cometary dust trails. As a case study, we demonstrate our analysis of the physical and spatial characteristics of the dust trail produced by the 2007 explosion of comet 17P/Holmes.
MSPG2 Team Beaty D. W. Carrier B. L. Kminek G. Meyer M. A. Haltigin T. Hays L. E. Agee C. B. Busemann H. Cavalazzi B. Cockell C. S. Debaille V. Glavin D. P. Grady M. M. Hauber E. Hutzler A. Marty B. McCubbin F. M. Pratt L. M. Regberg A. B. Smith A. L. Smith C. L. Summons R. E. Swindle T. D. Tait K. T. Tosca N. J. Udry A. Usui T. Velbel M. A. Wadhwa M. Westall F. Zorzano MP.	Summary of Mars Sample Return (MSR) Science Planning Group 2: Planning for the Arrival and Analysis of MSR Samples at Earth [#6242] MSPG2's overarching aims were to build upon previous efforts in defining an end-to-end MSR Science Program, and addressing important issues that will influence the design and implementation of the Sample Receiving Facility.
Safronova V. S. Kuznetsov E. D.	<i>Estimation of the Age of Two Young Pairs of Asteroids</i> [#6144] The age of the pair (87887) 2000 SS286 – (415992) 2002 AT49 ranges from 7.58 ± 0.035 to 8.8 ± 0.043 kyr; for the pair (320025) 2007 DT76 – (489464) 2007 DP16 one ranges from 15.4 ± 0.96 to 29.5 ± 0.04 kyr depends on the semimajor axis Yarkovsky drift.
Ovcharenko A. V. Schapov V. A. Muravyev L. A.	Geophysical Search of the Sterlitamak Meteorite [#6046] We describe the results of our geophysical studies (magnetic survey) on the territory of the crater formed after the fall of the sterlitamak meteorite. On our opinion, a significant mass of the meteorite may still be in the crater.
Christ O. Barbaro A. Brenker F. E. Domeneghetti M. C. Nestola F.	Shock Temperature Records in Graphite from the Northwest Africa 6871 Ureilite [#6052] Northwest Africa 6871 was studied by XRD and μ -Raman. It contains aggregates of nanographite and micro/nanodiamond. A graphite-geothermometer revealed a temperature of 1412 °C, which we ascribed to the shock event which destroyed the parent body.

Andreev A. O. Nefedyev Y. A.	Analysis of Broadband Color Characteristics and Spectral Distribution of Asteroids with Small Perihelion Distances [#6057] The purpose of this study is to analyze the genetic relationships of asteroids with small perihelion distances with meteor showers by broadband color characteristics based on modern optical observations with various color filters.
Andreev A. O. Nefedyev Y. A.	Creation of an Imitation Model of Near-Sun Asteroids with Small Perihelion Distances [#6058] The work is focused on creating a simulation model of near-Sun asteroids (NSAs) with small perihelion distances. The model includes astrophysical parameters of these objects, size distribution and their dynamic behavior in space.
Churkin K. O. Nefedyev Y. A. De La Morena C. Andreev A. O. Ahmedshina E. N.	Analysis of Digital Model of Titan Using Fractal Geometry and Automated Complex for Studies [#6113] This work aims at considering the issues of regression modeling of the surface of Saturn's moon, Titan and at studying the produced model by means of fractal geometry. Based on data collected by NASA Cassini the Titan surface model was created.
Churkin K. O. Andreev A. O. Nefedyev Y. A.	Creation of a Unified Selenocentric System Using Quantum Optical Systems [#6114] The work is devoted to the development of a method for creating a unified selenocentric system for a space satellite in a circumlunar orbit (SSCLO) and reference objects on the lunar surface using quantum optical devices.
Nefedyev Y. A. Sergienko M. V. Andreev A. O.	Analysis of Orbital Elements of Near Earth Objects over a Long- Term Period [#6087] The aim of this work is to analyze the changes in orbital elements of near earth objects (NEO) and to identify them with the meteor shower Delta Cancrids (MSDC). For MSDC connections with asteroids were investigated.
Nefedyev Y. A. Sergienko M. V. Andreev A. O.	The Coordinate Ranging of the Delta Cancrids Meteor Shower [#6088] The aim of this work is to refine the radiants distribution of the meteor shower Delta Cancrids (MSDC) branches and their drift motion and to study features of radiants distribution and orbit elements for MSDC using television observations.

Wednesday, August 11, 2021 VIRTUAL POSTER SESSION B 8:30 a.m.

Authors (*Denotes Presenter)	Abstract Title and Summary
Johnson P. A. Johnson J. C. Mardon A. A.	Utilization of Nano-Vibration for Microbial Life Sensing [#6085]
	Almost 50 years ago, we first detected bio-signatures and
	evidence of microorganisms in meteorites. We propose the
	utilization of nanoscale vibration technology for its use in
	meteorite sampling and detection of these bio-signatures
	in meteorites.

Stadermann A. C. Domanik K. Durestigate the initeralogy, chemistry, and volatile systematics of basalt fragments in Luna Jois (H6229) We investigate the initeralogy, chemistry, and volatile systematics of basalt fragments in Luna Jois (H6229) Lee M. R. Martin P. M. C. Floyd C.J. Jenkins L. Lee M. R. Martin P. M. C. Floyd C.J. Jenkins L. Jenkins L. Lee M. R. Martin P. M. C. Floyd C.J. Jenkins L. E. Lee M. Daly L. King A.J. Jenkins L. E. Lee M. Daly L. King A.J. Jenkins L. E. Lee M. R. Lindgren P. Daly L. Whitehouse M.J. Griffin S. Hallis L. Hallis L. Lowe H. Daly L. Lee M. R. Evidence of Micro-Foulting Within Ureillte Miller Range (Mill) 90908). Found within Ureillte Miller Range (Mill) 909080. Found within the data sets is evidence of Micro-Foulting Within Ureillte Miller Range (Mill) 909080. Found within the data sets is evidence of Micro-Foulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachida 004, a Polymict Winnonate from Morocco in 2020 that exhibits two distinct Histories of Apollo 15 and Apollo 15 and Paulo 4 is a recently recovered polymict winonalte from Morocco in 2020 that exhibits two distinct Histories of Apollo 15 and Apollo 15 and Paulo 15 and Paulo 15 and Paulo 15 and Paulo 15 and Apollo 15 and Apollo 15 and Apollo 15 and Paulo 15 and Paulo 15 and Apollo 15 and Paulo 15 and Paulo 15 and Paulo 15 and Apollo 15 and Paulo 15 and Paulo 15 and Pa	Morin S. M. Barnes I. J. Wilbur 7 F	Assessing the Volatile Inventory of Basaltic Fragments in
McCubbin F. M. We investigate the mineralogy, chemistry, and volatile Systematics of basalt fragments in Luna 16 and 24 solis. The overall goal is to better understand the origin(s) of chlorine isotobic furches Lee M. R. Martin P. M. C. Floyd C. J. A Kenolith from an Early Formed Parent Body in the CM Lee M. R. Martin P. M. C. Floyd C. J. A Kenolith from an Early Formed Parent Body in the CM Carbonaceous Chondrite LoPaz leefield 02239 [H6176] Why do so few xenoliths in CM carbonaceous Chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Identification of Closts in CM Chondrite Fall Kolang with 5 and Co [H6161] Clasts experienced / Alteration with fluids / Of varied makeups. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [H6161] Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachida 004, a Polymict Winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a Silcaet-rich LAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Investigating the Petrogenesis and Erraption Histories of Apollo 15 and Apollo 17 Basalts (Contain vesicles and Usey in Chondrites: Support for a Nebular Origin [H6129]	Stadermann A C Domanik K	Lung Soils [#6229]
Systematics of basalt fragments in Luna 16 and 24 soils. The overall goal is to better understand the origin(s) of chlorine isotop fractionation on the Moon. Lee M. R. Martin P. M. C. Floyd C. J. Jenkins L. A kenolith from an Early Formed Parent Body in the CM Carbonaceous Chondrite LaPaz Leefield 02239 [#6156] Jenkins L. A kenolith from on Early Formed Parent Body in the CM Carbonaceous Chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Chung P. Identification of Clasts in CM Chondrite Fall Kolang with S and Co [#6161] Class experienced / Alteration with fluids / Of varied makeups. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Ballis L. Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Urellite Miller Range (MIL) 090300 [#6045] This abstract presents new EDS data from the urellite sample Miller Range (MIL) 090300. Found within the data sets is vidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonalte from Moroacco in 2020 that exhibits two distint lithologies with varying metal abputed ultramafic metr residue and 2) a silicate-rich IAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A. Zeigler R. A. Soupont for a Nebular Origin [#fa129]	McCubbin F. M.	We investigate the mineralogy, chemistry, and volatile
verall goal is to better understand the origin(s) of chlorine isotope fractionation on the Moon. Lee M. R. Martin P. M. C. Floyd C. J. Jenkins L. A Xenolith from an Early Formed Parent Body in the CM Carbonaceous Chondrite LaPaz (cefield 02239 [#6176] Why do so few xenoliths in CM carbonaceous chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Chung P. Identification of Closts in CM Chondrite Fall Kolang with S and Ca [#6161] Clasts experienced / Alteration with fluids / Of varied makeups. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Ureilite Miller Range (Mill.) 090980. Found within the data sets is evidence of micro-Faulting throughout the sample affecting carbon and Iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonate Composed of Distinct High and Low Metail Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonalte from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1] a metal-depleted ultramafic melt residue and 2] a silicate-rich IAB of basalts composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A. Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebuaro Origin [#6129] Fine-grained chondrule tims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula. Barnes J. J. Wilbur Z. E. Domanik K.		systematics of basalt fragments in Luna 16 and 24 soils. The
Lee M. R. Martin P. M. C. Floyd C. J. A Kenolith from an Early Formed Parent Body in the CM Lee M. R. Martin P. M. C. Floyd C. J. A Kenolith from an Early Formed Parent Body in the CM Jenkins L. Carbonaceous Chondrite LoPas Legible 20239 [#6176] Why do so few xenoliths in CM carbonaceous chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Chung P. Chung P. Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Clasts experienced / Alteration with fluids / Of varied makeups. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Balts L. Whitehouse M. J. Griffin S. Heart Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Evidence of Micro-Faulting Within Urellite Miller Range [MIL] 090980. Found within the data sets is evidence of micro-faulting Within Urellite Miller Range [MIL] 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite from Morocco in 2020 that exhibits two distinct lifthologies With arying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distint lifthologies		overall goal is to better understand the origin(s) of chlorine
Lee M. R. Martin P. M. C. Floyd C. J. A Xenolith from an Early Formed Parent Body in the CM Jenkins L. A Xenolith from an Early Formed Parent Body in the CM Garbonaceous Chondrite LaPaz Icefield 02239 (#6176) Why do so few xenoliths in CM carbonaceous chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Identification of Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Chung P. Clasts experienced / Alteration with fluids / Of varied makeups. Pickersgill A. E. Lee M. R. Lindgren P. Daly L. Whitehouse M. J. Griffin S. Hallis L Botysh, was there life? / Did it eat tasty sulphur? / Isotopes will read for a fill the data sets is evidence of Micro-faulting Within Ureilite Miller Range (MLI) 09080 [#6045] Lowe H. Daly L. Lee M. R. Evidence of Micro-faulting Within Ureilite Miller Range (MLI) 09080 [#6045] Mille Range (MLI) 09080 [#6045] This abstract presents new EDS data from the ureilite sample miller Range (MLI) 090980 [#6045] Sheikh D. Petrology and Geochemistry of Errachidio 004, a Polymict Winnonite from Morocco in 2020 that schibts two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic Composet of Distinct High and Low Metal Lithologies (#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibts two distinct lithologies with varying metal abundances:		isotope fractionation on the Moon
Leckins L. Processing from the any number of the any num	Lee M. B. Martin P. M. C. Floyd C. I	A Xenalith from an Early Formed Parent Body in the CM
Version 2. Why do so few xenoliths in CM carbonaceous chondrites have a fine-grained rim? What does that tell us about the transport of lithic fragments through the disk? Jenkins L. E. Lee M. Daly L. King A. J. Identification of Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Chung P. Identification of Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Daly L. Whitehouse M. J. Griffin S. Hallis L. Hallis L. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 09080 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 09080 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 09080 [#6045] Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Uthologies [#6253] Wilbur Z. E. Barnes J. J. Eckley S. A. Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 15 and Apollo 15 and Apollo 17 Basalts/Contain vesicles and vugs/How were they emplaced? Mouti X. Davidson J. Schrader D. L. Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Barnes J. J. Wilbur Z. E. Domanik K. Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] Barnes J. J. Wilbur Z. E. Domanik K.	lenkins I	Carbonaceous Chondrite LaPaz Icefield 02239 [#6176]
Imposed and the second secon		Why do so few xenoliths in CM carbonaceous chondrites have a
Integration finit fragments through the disk?Jenkins L. E. Lee M. Daly L. King A. J. Chung P.Identification of Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Clasts experienced / Alteration with fluids / Of varied makeups.Pickersgill A. E. Lee M. R. Lindgren P. Daly L. Whitehouse M. J. Griffin S. Hallis L.Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell.Lowe H. Daly L. Lee M. R. Lowe H. Daly L. Lee M. R.Evidence of Micro-Faulting Within Ureilite Miller Range (ML) 90980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MLI) 90980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachida 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites <br< td=""><td></td><td>fine-grained rim? What does that tell us about the transport of</td></br<>		fine-grained rim? What does that tell us about the transport of
Jenkins L. E. Lee M. Daly L. King A. J. Identification of Clasts in CM Chondrite Fall Kolang with S and Ca [#6161] Chung P. Clasts experienced / Alteration with fluids / Of varied makeups. Pickersgill A. E. Lee M. R. Lindgren P. Daly L. Whitehouse M. J. Griffin S. Hallis L Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metai Lithologies (#6253] Wilbur Z. E. Barnes J. J. Eckley S. A. Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts (#6130] Yoult X. Davidson J. Schrader D. L. Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Houndrices: Support for a Nebular Origin [#6129] Barnes J. J. Wilbur Z. E. Domanik K. Phosphate Chemistry in Brachinites and Brachinite: Keenthies, Brenker F. E. Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E. For Carly Solar System Particle Aggregation (Lee Aggregation). Wilde F. Winkler B. Brenker F. E. For and Apola the ISS to fuse		lithic fragments through the disk?
Chung P. and Co [#6161] Clasts experienced / Atteration with fluids / Of varied makeups. Pickersgill A. E. Lee M. R. Lindgren P. Seeking Evidence of Life in Sulphides from the Boltysh Hallis L. Seeking Evidence of Life in Sulphides from the Boltysh Hallis L. Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes Will tell. Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample difficultier And the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Investigating the Petrogenesis and Eruption Histories of Apollo 15 Zeigler R. A. and Apolio 17 Basalts [#6130] Mouti X. Davidson J. Schrader D. L. Fine-Grained Rims in	lenkins I E Lee M Daly I King A I	Identification of Clasts in CM Chondrite Fall Kolana with S
Clasts experienced / Alteration with fluids / Of varied makeups.Pickersgill A. E. Lee M. R. Lindgren P. Daly L. Whitehouse M. J. Griffin S. Hallis LSeeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell.Lowe H. Daly L. Lee M. R.Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinite all brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinite all brachinite-like meteorites.Wilde F. Winkler B. Brenker F. E. Ormation of Fused Aggregation.Formatice Aggreg	Chung P	and Ca [#6161]
Pickersgill A. E. Lee M. R. Lindgren P. Daly L. Whitehouse M. J. Griffin S. Seeking Evidence of Life in Sulphides from the Boltysh Impact Structure [#6181] Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and irron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A. Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced? Mouti X. Davidson J. Schrader D. L. Bullock E. S. Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula. Barnes J. J. Wilbur Z. E. Domanik K. Phosphate Chemistry in Brachinite and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in Brachinite and Brachinite-like meteorites. Koch T. E. Spahr D. Tkalcec B. J. Christ		Clasts experienced / Alteration with fluids / Of varied makeups
Interspin R. E. Cer M. R. Endigren T.December of potent and potent potent and potent pote	Pickersgill A. F. Lee M. R. Lindgren P.	Seeking Evidence of Life in Sulphides from the Boltysh
bary L. Wintenbuse W. J. Gimmin J. Impact solution (MOS) Hallis L. Boltysh, was there life? / Did it eat tasty sulphur? / Isotopes will tell. Lowe H. Daly L. Lee M. R. Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980 (#6045) This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins. Sheikh D. Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies (#6253) Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition. Wilbur Z. E. Barnes J. J. Eckley S. A. Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced? Mouti X. Davidson J. Schrader D. L. Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula. Barnes J. J. Wilbur Z. E. Domanik K. Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrece of phosphates and their chemistry in brachinite and brachinite-like meteorites. Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.	Daly I. Whitebouse M. I. Griffin S	Impact Structure [#6181]
Hams L.Dolrysi, was there iner / Did it eer tasty supplied / isotopeswill tell.will tell.Lowe H. Daly L. Lee M. R.Evidence of Micro-Faulting Within Ureilite Miller Range (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachnites and Brachnite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachnite and brachnite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Lused Agregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an expe	Hallie I	Boltysh was there life? / Did it eat tasty sulphur? / Isotopes
Lowe H.Daly L.Lee M. R. <i>Evidence of Micro-Faulting Within Ureilite Miller Range</i> (MIL) 090980 [#6045] This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E.Barnes J. J.Eckley S. A.Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X.Davidson J.Schrader D. L. Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J.Wilbur Z. E.Domanik K.Barnes J. J.Wilbur Z. E.Domanik K.Bullock E. S.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E.Spahr D.Tkalece B. J. Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to		will toll
Lower H. Dary E. Lee M. K.CMUL 090980 (#6045) I This abstract presents new EDS data from the ureilite sample Miller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] 		Fuidence of Micro-Faulting Within Lireilite Miller Range
Initial bistract presents new EDS data from the ureilite sampleMiller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle aggregation .Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Lowern. Dary L. Lee M. K.	
InstructionMiller Range (MIL) 090980. Found within the data sets is evidence of micro-faulting throughout the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of baselite composition.Wilbur Z. E. Barnes J. J. Eckley S. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and rugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		This abstract presents new EDS data from the ureilite sample
Moute Hong CompositionMile Description of the sample affecting carbon and iron-rich veins.Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation.Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Miller Range (MIL) 090980 Found within the data sets is evidence
Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation.		of micro-faulting throughout the sample affecting carbon and
Sheikh D.Petrology and Geochemistry of Errachidia 004, a Polymict Winonaite Composed of Distinct High and Low Metal Lithologies [#6253] Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System particle aggregation.Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		iron-rich veins
 Direktin D. Direktin	Sheikh D	Petrology and Geochemistry of Errachidia 004, a Polymict
Metal Lithologies [#6253]Metal Lithologies [#6253]Errachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Sheikh D.	Winongite Composed of Distinct High and Low
InclusionInclusionErrachidia 004 is a recently recovered polymict winonaite from Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Metal Lithologies [#6253]
Morocco in 2020 that exhibits two distinct lithologies with varying metal abundances: 1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Errachidia 004 is a recently recovered polymict winonaite from
Instal abundances:1) a metal-depleted ultramafic melt residue and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Morocco in 2020 that exhibits two distinct lithologies with varying
and 2) a silicate-rich IAB of basaltic composition.Wilbur Z. E. Barnes J. J. Eckley S. A. Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15 and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation.Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		metal abundances: 1) a metal-depleted ultramafic melt residue
Wilbur Z. E.Barnes J. J.Eckley S. A.Zeigler R. A.Investigating the Petrogenesis and Eruption Histories of Apollo 15and Apollo 17 Basalts [#6130]Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X.Davidson J.Schrader D. L.Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J.Wilbur Z. E.Domanik K.Barnes J. J.Wilbur Z. E.Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E.Spahr D.Tkalcec B. J. Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		and 2) a silicate-rich IAB of basaltic composition.
Zeigler R. A.and Apollo 17 Basalts [#6130] Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Wilbur Z. E. Barnes J. J. Eckley S. A.	Investigating the Petrogenesis and Eruption Histories of Apollo 15
Apollo basalts/Contain vesicles and vugs/How were they emplaced?Mouti X. Davidson J. Schrader D. L. Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregation [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Zeigler R. A.	and Apollo 17 Basalts [#6130]
they emplaced?Mouti X. Davidson J. Schrader D. L.Bullock E. S.Bullock E. S.Support for a Nebular Origin [#6129]Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Barnes J. J. Wilbur Z. E. Domanik K.Koch T. E. Spahr D. Tkalcec B. J.Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Wilde F. Winkler B. Brenker F. E.Support Schreib C.Support Schreib C.Started C. <td></td> <td>Apollo basalts/Contain vesicles and vugs/How were</td>		Apollo basalts/Contain vesicles and vugs/How were
Mouti X.Davidson J.Schrader D. L.Bullock E. S.Fine-Grained Rims in Mighei-Like Carbonaceous Chondrites: Support for a Nebular Origin [#6129] Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J.Wilbur Z. E.Domanik K.Barnes J. J.Wilbur Z. E.Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E.Spahr D.Tkalcec B. J.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		they emplaced?
Bullock E. S.Support for a Nebular Origin [#6129]Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Mouti X. Davidson J. Schrader D. L.	Fine-Grained Rims in Miahei-Like Carbonaceous Chondrites:
Fine-grained chondrule rims were analyzed in six CM chondrites and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Bullock E. S.	Support for a Nebular Oriain [#6129]
and their abundances and sizes were determined. Results indicate rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Fine-grained chondrule rims were analyzed in six CM chondrites
rims formed in the nebula.Barnes J. J. Wilbur Z. E. Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300] In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		and their abundances and sizes were determined. Results indicate
Barnes J. J.Wilbur Z. E.Domanik K.Phosphate Chemistry in Brachinites and Brachinite Like Meteorites [#6300]In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E.Spahr D.Tkalcec B. J. Christ O.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043]Wilde F.Winkler B.Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		rims formed in the nebula.
Like Meteorites [#6300]In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Barnes J. J. Wilbur Z. E. Domanik K.	Phosphate Chemistry in Brachinites and Brachinite
In this work, we investigate the textural occurrence of phosphates and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D. Wilde F. Winkler B. Brenker F. E.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043] We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		Like Meteorites [#6300]
and their chemistry in brachinite and brachinite-like meteorites.Koch T. E. Spahr D. Tkalcec B. J. Christ O. Genzel PT. Merges D.Formation of Fused Aggregates Aboard the ISS with Implications for Early Solar System Particle Aggregattion [#6043]Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.		In this work, we investigate the textural occurrence of phosphates
Koch T. E.Spahr D.Tkalcec B. J.Christ O.Genzel PT.Merges D.Wilde F.Winkler B.Brenker F. E.Wilde F.Winkler B.Brenker F. E.Wilde F.Starter Starter St		and their chemistry in brachinite and brachinite-like meteorites.
Christ O. Genzel PT. Merges D.for Early Solar System Particle Aggregattion [#6043]Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Koch T. E. Spahr D. Tkalcec B. J.	Formation of Fused Aggregates Aboard the ISS with Implications
Wilde F. Winkler B. Brenker F. E.We carried out an experiment under long-term microgravity conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Christ O. Genzel PT. Merges D.	for Early Solar System Particle Aggregattion [#6043]
conditions aboard the ISS to fuse particles in order to study early solar system particle aggregation.	Wilde F. Winkler B. Brenker F. E.	We carried out an experiment under long-term microgravity
solar system particle aggregation.		conditions aboard the ISS to fuse particles in order to study early
		solar system particle aggregation.

Di Y. Sapah M. S. Amelin Y.	Complex Pb Isotopic Contamination in CAIs from Northwest
	Africa 4502 [#6033]
	Pb isotopic systems of CAIs from NWA 4502 CV chondrite show
	strong and complex terrestrial contamination signatures. The Pb
	contamination in CAIs is difficult to completely remove by acid
	leaching, and requires a more effective cleaning procedure.
Pittarello L. Chernonozhkin S. M.	A Puzzling Fragment from the Dyalpur Ureilite: Anomalous
Goderis S. Vanhaecke F. Downes H.	Components, Microstructures, and Geochemistry [#6024]
	The investigated fragment presents the following unusual
	features for ureilites: presence of amphibole clasts in an olivine-
	rich matrix, unusual high Co content in sulfides, uncommon Mn
	and Cr content in olivine.
Anand A. Pape J. Mezger K. Hofmann B.	Cr and O Isotopes Link IVA Irons and LL Chondrites [#6154]
	Investigation of the association between IVA irons and L/LL
	ordinary chondrites within ϵ^{54Cr} vs. Δ^{170} space based on ϵ^{54Cr}
	values obtained from chromite (FeCr ₂ O ₄) or daubréelite (FeCr ₂ S ₄)
	inclusions in IVA iron meteorites.
Hwang S. L. Shen P. Varela M. E.	Electron Microscopic Study of Graphite in the Vaca
Saavedra M. Yui T. F. Chu H. T.	Muerta Mesosiderite [#6019]
	Scanning electron microscopy (SEM) and transmission electron
	microscopy (TEM) studies coupled with energy dispersive X-ray
	(EDX) analysis in the Vaca Muerta mesosiderite give some hints
	about graphite formation.
Hwang S. L. Saavedra M. Shen P.	A Transmission Electron Microscopy Study of the Olivine Coronas
Varela M. E. Chu H. T. Yui T. F.	in the Vaca Muerta Mesosiderite [#6018]
	A transmission electron microscopy (TEM) coupled with energy
	dispersive X-ray (EDX) analysis was performed to shed light on the
	main process under which the Vaca Muerta coronas were formed.
Demina N. Y. Nefedyev Y. A.	Analysis of the Unified Digital Database of Observations of
Andreev A. O.	Modern Satellite Lunar Missions [#6054]
	The aim of this work is to analyze the unified digital database of
	optical observations obtained during the satellite lunar missions.
	A transformation method was created for the coordinate systems
	and mega-relief of the Moon.
Demina N. Y. Andreev A. O.	Modeling the Lunar Physical Parameters Using Complex
Nefedyev Y. A.	Systems Methods [#6056]
	The aim of this work is analysis of stochastic and dynamical
	features of time series describing the satellite measurements of
	gravitational fields and parameters of lunar physical
	libration (LPL).
Zagidullin A. A. Andreev A. O.	Automated Stochastic Analytical Complex for the Analysis of
Nefedyev Y. A.	Satellite Observations of the Gravitational Field and Physical
	Libration of the Moon [#6212]
	The work is focused to the development of a software for two-
	parameter cross-correlation dependence construction in order to
	describe stochastic similarity in time series of satellite
	observations of gravity field and lunar physical libration.

Zagidullin A. A. Nefedyev Y. A.	The Simulation System for Determining the Positions of Lunar
Andreev A. O.	Objects on the Basis of Satellite Observations in the
	Selenocentric System [#6214]
	The work is focused to the creation of the software simulation
	system for determining the positions of lunar objects on the basis
	of satellite observations in the selenocentric system using the
	lunar space missions data.

